求过曲线y=ex上的点P(1,e)且与曲线在该点处的切线垂直的直线方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:02:17
解这曲线为y=2x^2-1.求导y'=4x即函数在点P(x,y)处的切线斜率为4x,且过点(1,1)
y'=3x^2+6x+4=3(x+1)^2+1>=1导数是切线斜率所以k>=1所以π/4
∵函数y=12ex+1与函数y=ln(2x-2)互为反函数,∴函数y=12ex+1与函数y=ln(2x-2)的图象关于直线y=x对称,∴|PQ|的最小值是点P到直线y=x的最短距离的2倍,设曲线y=1
y=x^2y'=2xPQ斜率(4-1)/(2+1)=1与直线PQ平行,k=y'=1x=1/2y=x^2=1/4所以切点(1/2,1/4)y-1/4=1*(x-1/2)4x-4y+1=0与直线PQ垂直,
y'=-sinx,y'(π/3)=-sinπ/3=-√3/2.所以,所求切线方程为y-1/2=(-√3/2)(x-π/3),即√3x+2y-√3π/3-1=0.
设P(x0,y0),由题意知曲线y=x2+1在P点的切线斜率为k=2x0,切线方程为y=2x0x+1-x02,而此直线与曲线y=-2x2-1相切,∴切线与曲线只有一个交点,即方程2x2+2x0x+2-
切线或者直线方程是没有的方向的,何来会有两种情况?任一一点只有只有一条切线和垂线,倒是涉及到向量的就有两种情况了.再问:我的意思是,有一条切线过了点P,但是切线与函数的切点并不是点P。这种情况。再答:
y=1/3x3+4/3y的导数y'=x²,所以x=a处的斜率为a²
设切线斜率为k,P(x,x^3+x-1)由已知,k=4又因为k=y‘=(x^3+x-1)'=3x^2+1解得:x=±1所以P(1,1)或P(-1,-3)
f`(x)=3x^2f`(2)=12=k所以切线方程:y-8=12(x-2)y=12x-16
①求平行于直线6X+2Y+1=0并且与曲线Y=X+3X-5相切的直线方程.②求过曲线Y=cosx上点P(兀/3,1/2),且与过这点的切线的直线方程.
因为y′=4′•(ex+1)-4(ex+1)′(ex+1)2=-4ex(ex+1)2=-4ex+e-x+2,∵ex+e-x≥2ex•e-x=2,∴ex+e-x+2≥4,∴y′∈[-1,0)即tanα∈
储备知识:1)曲线y=x^n对其求导(即求其微分)y’=n•x^(n-1)若有点Q(a,a^n)把x=a代入y’=n•x^(n-1)得到y’=n•a^(n-1)即为
设切点为(x0,y0)根据题意得y'=3x²∴k=y'|x=x0=3x0²∴切线为y-1=(3x0²)(x-1)①又∵切点在曲线上∴y0=x0³②由①②得x0&
对函数y=1/3x3+4/3求导可得y′=x^2所以,曲线在点P(2,4)处的斜率是:k=y′|x=2=4因此,曲线上点P(2,4)处的切线方程是:y-4=4(x-2)整理得:4x-y-4=0
y=5√xf'(x)=5/(2√x)平行时,f"(x)=2x=25/16f(x)=25/4切线为y-25/4=2(x-25/16)设切点(t,f(t))切线为y-5√t=5/(2√t)(x-t)代入(
∵y=4ex+1,∴y′=-4e(ex+1)2<0∵k为曲线在点P处的切线的斜率,∴k的取值范围是(-∞,0).故答案为:(-∞,0).
1求导y=(x^2)/2y'=x=2所以切线L的斜率为2而点P(2,2)用点斜式求得L:2x-y-2=02L:2x-y-2=0与y轴交予点A(0,-2)曲线c:x^2=2y的焦点为F(0,1/2)可以
注意是“过某点…”,则此点未必是切点.1、若点P为切点,则切线斜率k=f'(2);2、若点P不是切点,设切点为Q(m,n),则由导数得到的切线斜率k=f'(m)等于直线PQ的斜率,再利用点Q在曲线上,
y'=x^2,x=2,y'=4(y''=2x,x=2时,y"≠0,是切线)切线斜率是4,y-8/3=4(x-2)(点斜式)y=4x-16/3