求证函数f x=4x 9 x在(0,1.5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:06:21
求证函数f x=4x 9 x在(0,1.5)
已知二次函数fx=ax2+bx+c,若在|x|≤1时,|fx|≤1,求证:当|x|≤1时,|2a+b|≤4

根据已知可得|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,也即|a-b+c|≤1,|c|≤1,|a+b+c|≤1,由于|2a+b|=|3/2*(a+b+c)+1/2*(a-b+c)-2c|≤

已知函数fx 满足fx+fy=f(x+y)+2 当x>0时,fx>2 求fx在R上是增函数

证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)

已知函数F(x)=2x-1/2x-1注意x是2次方判断Fx的奇偶性 求证FX在定义域上的曾函数

式子加一再减一F(x)=(2x-1)-1/(2x-1)+1然后设t=2x+1的f(x)=t-1/t+1然后就用初等函数来解吧.自己看法,

已知定义在R上的函数fx满足f(x+2)f(x)=1,求证fx是周期函数

证明由f(x+2)f(x)=1得f(x+2)=1/f(x).(*)则f(x+4)=f(x+2+2).(利用*式)=1/f(x+2).(再次利用*式)=1/[1/f(x)]=f(x)故f(x+4)=f(

已知函数fx=根号下x+1,求证fx在定义域上是增函数

函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1

已知fx是定义在零到正无穷大上的增函数,且满足fxy=fx+fy,f2=1 求证f8=3 求不等式

在f(xy)=f(x)+f(y)中,令x=y=2,得f(4)=f(2)+f(2)=2再令x=4,y=2,得f(8)=f(4)+f(2)=2+1=3于是,不等式f(x)-f(x-2)>3可化为f(x)>

已知函数fx 对任意x,y属于R,都有fx+fy=fx+y,当x大于0时,fx小于0,f(-1)=2,求证fx是奇函数

令y=0f(x)+f(0)=f(x)∴f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(-x)=-f(x)定义域R所以是奇函数

已知函数fx对任意x,y∈R,总有fx+fy=fx+y,且当x>0时,fx<0,f(-1)=2 求证:fx在R上是减函数

令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(x)=-f(-x)是奇函数设x2>x1,则x2-x1>0f(x2-x1)

设函数y=fx是定义在(0,+无穷)上的增函数 且满足fx/y=fx-fy求证(1)fxy=fx+fy (2)若f2=1

f(y)=f(xy/x)=f(xy)-f(x)那么f(x)+f(y)=f(xy)f(x)-f[1/(x-3)]≤2f[x(x-3)]≤f(2)+f(2)f(x²-3x)≤f(4)因为y=f(

已知函数fx=(2的x次方加一)分之2的x次方减一①判断函数的奇偶性②求证:fx在R上为增函数③求证:方程fx-㏑x=0

再答:方程是这样吗?再问:不是哦再答:好,你等下。再问:再答:先来两问。再答:再答:再答:第三问我之前想复杂了…orz让你久等sorry啊再问:没事,谢啦,你真是一好学生。。。

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x²-2mx+1,求函数fx在[0,4]上的最小值.

f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.

在函数fx=log

答:f(x)和h(x)都关于y轴对称f(x)=lg(1+x²),定义域为实数范围Rf(-x)=lg(1+x²)=f(x),为偶函数,关于y轴对称g(x)=x^(1/2),定义域x>

已知函数fx=alnx+x^2 若a=-2 第一问求证 fx在(1,正无穷)上是增函数 第二问求函数fx在[1,e]上的

1f(x)=2lnx+x^2f'(x)=2/x+2x=(x+1/x)2>0x+1/x>0x>=1时,x+1/x>0x^2+1>0恒成立.所以x>=1时,f'(x)>>0f(x)在x>=1是增的.f(x

已知函数FX的定义域为x不等于0,当x>1时,fx>0,且fxy fx+fy,求证fx在(0,正无穷)上为增函数.

任取x>0,k>1,则[f(kx)-f(x)]/(kx-x)=f(k)/(kx-x)∵k>1∴f(k)>0又kx-x>0∴[f(kx)-f(x)]/(kx-x)>0∴f(x)在(0,+∞)上单调递增

R在奇函数y=fx在[0,正无穷大)为减函数,求证y=fx在(负无穷大,0)为减函数

奇函数y=f(x)定义域是R,对任意x有f(-x)=-f(x).y=f(x)在x∈[0,+∞)上为减函数即对x1,x2∈[0,+∞)且x2>x1有f(x2)x4,f(x3)=-f(x1)