求级数叠加n*z的n次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:28:06
1+n分之1和的n次方的极限是e,所以级数的通项的极限非零,级数发散再问:1+n分之1和的n次方的极限是e就是问这个是怎么来的。再答:重要极限呐
找收敛域,让后除以前一项,看看就可以
已知三分之一xyz平方乘N=(5/3)x^(4n+1-2n-1)*y^(n+3-n+1)*z^5=(5/3)x^(2n)*y^4z^5所以N=3(5/3)*x^(2n-1)y^(4-1)*z^(5-2
发散啊,不满足级数收敛的必要条件.
先判断是否绝对收敛,如下:
用后一项比前一项.(n/(n+1))^n---->1/e故收敛.
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
记通项是an,当x不为0时,显然|a(n+1)/an|=|(n+1)x/3|,只要n+1>3/|x|,则有|a(n+1)/an|>1,|an|递增趋于无穷,级数发散.因此原级数只在x=0收敛.
(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(
这个是正项级数,用不上Abel定理,试试比值判别法.
记通项为an,则lima(n+1)/an=e/a,因此a>e级数收敛,a
∵分母的极限lim(n→∞)[(1+1/n)^n]^2=e^2是有限数而分子是无穷大量∴级数的一般项不趋于0,故级数发散
∵z的n次方=1,∴z的(n+1)次方=z.又∵1+z.+z的n次方为等比数列前n+1项和,公比为z,当z≠1时,根据等比数列求和公式,得1+z.+z的n次方=(1-(z的(n+1)次方))/(1-z
比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n
原式=(1/2)^n=0
N=2时是勾股定理N>2时是费马大定理,详情见怀尔斯和泰勒在1995年的《数学年刊》(AnnalsofMathematics)发表的论文,当然一般来说是看不懂的,至少我看不懂.