f(x) f(y)=f(x y除以1 xy)奇偶性)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:13:33
设x=0Y=0则F(0)=2F(0),F(0)=0,设X=X,Y=-X,则F(0)=F(X)+F(-X),移项,为奇,-F(X)大于0,则F(-X)大于0,结合已知,增,F2=2F1=6,F3=F2+
f(x+y^2)=f(x)+2[f(y)]^2f(0)=f(0+0^2)=f(0)+2[f(0)]^2f(0)=0f(0+x^2)=f(0)+2[f(x]]^2f(x)=2[f(√x)]^2f(1)=
(1)令x=y=0,所以f(0)=f(0)+f(0),所以f(0)=0令x=y=1,所以f(1)=f(1)+f(1),所以f(1)=0令x=y=-1,所以f(1)=f(-1)+f(-1),所以2f(-
令y=1,所以f(x+1)=f(x)+f(1)+x,f(1)=1所以f(x+1)=f(x)+x+1再令上式中x=1,2,3...,n-1得f(2)=f(1)+2f(3)=f(2)+3f(4)=f(3)
首先,我觉得你可能打错题了,以我做题的经验,应该是求证f(x/y)=f(x)—f(y)吧,然后,不管第一问怎样,第二问都能解出来,我就按“-”求证吧注:x^2=x*x(x的平方)(1)f(x/y)=f
令x=y=0,则f(0)=0.令y=-x,则f(0)=f(x)+f(-x),则f(x)在R上为奇函数.f(x+y)=f(x)+f(y),有f(x-y)=f(x)+f(-y)=f(x)-f(y).
证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)
第一问,这个是要做题经验试的,单调增函数,关键要找到f(x)=0的那点.f(1*1)=f(1)=f(1)+f(1),推出f(1)=0,所以f(log2x)
令x=y=1得f(1)=0令y=1/x得f(x*1/x)=f(x)+f(1/x)=0即f(1/x)=-f(x)所以:f(x/y)=f(x*1/y)=f(x)+f(1/y)=f(x)-f(y)
当x=y=0时f(0+0)+f(0)=2f(0)f(0)f(0)²=f(0)f(0)=1或者f(0)=0当y=0时f(x)+f(0)=2f(x)f(0)若f(0)=0f(x)=0若f(0)=
令y=0,则有f(x)+f(x)=2f(x)f(0)令x=0,y=x,则有f(x)+f(-x)=2f(0)f(x)所以f(x)=f(-x),f(x)为偶函数
挺好的题f(xy)=xf(y)+yf(x)---(1)设y=c=常量则:f(cx)=cf(x)+f(c)x两边求导数f'(cx)*c=cf'(x)+f(c)cf'(cx)-cf'(x)=f(c)此式对
令x=y=1f(1)=f(1)+f(1)f(1)=0
∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+
(第1步)设x=0,y=2008,代入公式f(x+y)=f(xy)两边,得f(x+y)=f(0+2008)=f(2008);f(xy)=f(0*2008)=f(0);有:f(2008)=f(0);(第
对于任意的整数x和y,都符合F(xy)除以1997的余数与f(x)f(y)的乘积除以1997的余数相等
3=1+1+1=f(2)+f(2)+f(2)=f(2*2)+f(2)=f(4*2)=f(8)f(x)+f(x-2)=f(x*(x-2))=f(x^2-2x)结合定义域知识,所以f(x)+f(x-2)0
1)令x=y=1,则f(1)=f(1)+f(1)=2f(1),所以,f(1)=0.2)取y=1/x,则f(1)=f(x)+f(1/x),所以,f(x)+f(1/x)=0,因此,f(1/3)+f(1/2
这个性质是从实际对数抽象出来的性质,可称为对数性质,与其相对应的有指数性质,线性性质,三角函数性质.证明:已知f(xy)=f(x)+f(y)且f(a)=1.f(1)=f(1)+f(1)可知f(1)=0
答案是0由f(xy)=f(x)+f(y),得f(1)=0,如f(1/4)=f(1)+f(1/4)推出放f(1)=0所以f(1/3)+f(1/2)+f(1)+f(2)+f(3)=f(1/3)+f(3)+