求曲线Y=e^x再点(0,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:10:50
方程两边求导:y'+e^y^2*2y*y'-1=0,x=1,y=0,y'=1∴切线方程:y=x-1
设斜渐近线为y=ax+ba=lim[x→∞]y/x=lim[x→∞]ln(e+1/x)=1b=lim[x→∞][xln(e+1/x)-ax]=lim[x→∞][xln(e+1/x)-x]=lim[x→
两条渐近线,一条是x=1/e,另一条是y=1
两边对x求导:y'e^y-y-xy'=0y'=y/(e^y-x)将x=0代入原方程,e^y=e,得y=1,即在点(0,1)处此时y'=1/e因此切线方程为y=x/e+1法线方程为y=-ex+1
对e^x+e^y=x+y+2两边求导得e^x+y'e^y=1+y'y'=(1-e^x)/(e^y-1)显然当x=0,y=0时,y'=0/0型,所以y'(0)不存在
y=e^x(0,1)y`=e^xk=y`/(x=0)=e^0=1y-1=x(切线方程)y=x+1k`=-1y-1=-xy=1-x(法线方程)
切线由求导得到斜率,代入点(0,1)得到方程y=x+1然后由定积分求面积积(e^2-x-1)从0到2,得到e^2-4
y=e^x(cosx+sinx)y‘=2*e^x*cosx所以当x=0时,切线斜率k=2*1*1=2而当x=0时,y=1所以切线方程为y-1=2x即y=2x+1
切线方程是y=x+2再问:解的过程再答:求导啊,导出来是[cos(x)×e^x-sin(x)×e^x]/e^2x,把x=0带入,得到的数是1,即为切线的斜率。y-2=1×(x-0),化简一下就行了。
e^(x+y)+xy=0对两边求导得:y'e^(x+y)+y+xy'=0当x=1,y=-1时,y'e^0-1+y'=02y'=1y'=1/2所以切线为y+1=1/2(x-1),即y=x/2-3/2法线
y'(x)=e^x在点(0,1)处的切线方程y=x+1法线的斜率和切线斜率相乘等于-1在点(0,1)处的法线方程y=-x+1
/>切线的斜率就是曲线在该点的导数求导y'=2e^2x+2x.所以y'|(x=0)=2.当x=0时,y=1.切线斜率k=2.所以切线方程y-1=2(x-0),即2x-y+1=0.法线的斜率k'=-1/
y=x(lnx-1)求导数就是切线的斜率.y'=(lnx-1)+x*1/x=lnx在(e,0)切线斜率就是k=lne=1所以y-0=1*(x-e)y=x-e就是切线
y=e^x/(e^x+1)切点为(0,1/2)y‘=【e^x(e^x+1)-e^x·e^x】/(e^x+1)²所以斜率=1/4所以切线方程为y-1/2=1/4(x-0)y=1/4x+1/2
切线斜率为e^x0,又直线过(x0,e^x0)和(-1,0)两点,于是e^x0=e^x0/(x0+1).解得x0=0
(0,1)就在曲线上,所以是切点y'=e^xx=0,y'=1所以切线斜率是1,过(0,1)所以是x-y+1=0
y=2/e求渐近线的方法一般都是求极限.在本题中那当然是算x趋于无穷大时y的值了.将函数的左右两边都加上底数e,则右边就可以去掉对数运算,变成(e+1/e)的x次方.下面就是求它的极限问题了.代换t=
f=e^y-xy-edy/dx=-(df/dx)/(df/dy)=-(e^y-x)/(-y)=(e^y-x)/yx=0∴y=1dy/dx=(e-0)/1=e切线方程:y-1=exy=ex+1法线方程:
切线方程和微分的太简单了,我就说下心形曲线的面积吧r=a(1+cosθ)由于上半部分和下半部分对称,所以只需求(0,PI)内的面积即可S = ∫r²dθ =&n
P(x)=e^x-2e^xcosy,Q(x)=2e^xsiny∂P/∂y=2e^xsiny=∂Q/∂x因此积分与路径无关,选择A到O的线段y=0来做积分