求曲线 x=asin^2 t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:23:23
求曲线 x=asin^2 t
已知f(x)是曲线y=x^-2上点(t,t^-2)处的切线被坐标轴所截线段的长度,求f(t)最小值

y=x^(-2)得:y'=-2x^(-3)在点(t,t^(-2))处的斜率是:k=-2t^(-3),切点是(t,t^(-3)),则切线方程是:y=-2t^(-3)[x-t]+t^(-2)以x=0代入,

星行曲线,x=acos^3t,y=asin^3t,求曲线所围成的面积?

理论上可以.先化为极坐标表示:p=a*(sin^6t+cos^6t)^(1/2),在积分.面积S=p^2(t)dt(积分上下限为2PI,0),不过这样积分更复杂.再问:能提供解题答案吗极坐标的我解的不

已知曲线L的参数方程为 x=t^2+1 y=4t-t^2 (t≥0),求L的直线坐标方程.

x=t^2+1t^2=x-1t=根号(x-1)y=4t-t^2=4根号(x-1)-x+1y=4根号(x-1)-x+1(x>=1)

求曲线x=t y=t^2 z=t^3在t=2处的切线方程和法平面方程.

(x-2)/1=(y-4)/4=(z-8)/12(x-2)+4(y-4)+12(z-8)=0.直接微分可出导数,然后得到答案

曲线x=asinθ+acosθ,y=acosθ+asinθ(θ为参数)的图形是A.B.C.D.

x=asinθ+acosθ=√2a(sinθcos45+cosθsin45)=√2asin(θ+45)同样:y=acosθ+asinθ=√2a(sinθcos45+cosθsin45)=√2asin(

根据图像求f(x)=Asin(wx+y).

sinx函数图像在0-π之两个区间在x轴上方观测f(x)0点之后两区间在x轴位置,上方则A为正,下方则A为负.

求曲线参数的切线方程求曲线x=2e^t y=-e^t在t=0对应处的方程

dx/dt=2e^tdy/dt=-e^ty'=-e^t/(2e^t)=-1/2x(0)=2y(0)=-1所以t=0处的切线方程为:y=-1/2*(x-2)-1=-x/2

设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=

汗,参数方程的曲率啊,直接代公式就可以了再问:是的不假,但是我怎么算的都是答案的3背呢,多个常数倍数3……我就绕进去出不来了…………再答:也许是答案错误了。再问:………………汗…………因为之前有过类似

求由x=acos^2t,y=asin^2t所围成的图形的面积

x=a(cost)^2y=a(sint)^2a>0x+y=a交x轴于A,交y轴于Bx=0,y=aB(0,a)y=0,x=aA(a,0)Saob=(1/2)OA*OB=(1/2)a^2

求曲线x=t,y=t^2,z=t^3上与平面x+2y+z=1平行的切线方程

平面x+2y+z=1的法线方向{1,2,1}曲线x=t,y=t^2,z=t^3在t的切线方向{1,2t,3t²}.平面‖切线↔法线⊥切线.∴平面‖切线↔1*1+2*2

求正弦信号x(t)=Asin(wt+φ)的自相关函数和功率谱密度函数

R(t1,t2)=E[x(t1)x(t2)]=E[Asin(wt1+φ)Asin(wt2+φ)]=(A2/2)E{cos(t2-t1)-cos[w(t2+t1)+2φ]}=(A2/2){cos(t2-

如何x(t)=cos(t)+asin(t) y(t)=sin(t)+bcos(t) expressing x(t) in

x(t)=cos(t)+asin(t)=√(1+a^2)cos(t-α),其中cosα=1/√(1+a^2),sinα=a/√(1+a^2).同理,y(t)=sin(t)+bcos(t)=√(1+b^

1、求曲线y=1/x²在点(1,1)的切线方程.2、求曲线x=1+t²,y=t³在t=2处

1,y'=-2/x^3、y'(1)=-2,则切线的斜率为-2.由点斜式可得切线方程为:y-1=-2(x-1),即2x+y-3=0.2,dx=2tdt、dy=3t^2dt.y'=dy/dx=2/(3t)

求星形线的质心,x=acos^3t;y=asin^3t(0≤t≤π/2),a>0

应该是假设了线的线密度是一个定值,所以线的质量和长度成正比.ds是长度微元,ds=\sqrt(dx^2+dy^2).I是长度,乘以线密度就是总的质量了质心是位置矢量,定义为\int\vec{r}*dm

设f(x)=sin^2 x+asin^2 (x/2),求f(x)最大值

f(x)=sin^2x+asin^2(x/2)=sin^2x+a(1-cosx)=1-cos^2x+a-acosx1=-(cos^2x+acosx)+a+1=-(cos^2x+acosx+a^2/4)

x=acos^3t y=asin^3t 在t=π/6时,求相应点切线方程和法线方程

dx/dt=3a(cost)^2(-sint)=-3asint(cost)^2,dy/dt=3a(sint)^2*(cost),dy/dx=(dy/dt)/(dx/dt)=[3a(sint)^2*(c

求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)

尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]