求方程y²+x3y=2x所确定的隐函数y=y(x)的二阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:11:57
求方程y²+x3y=2x所确定的隐函数y=y(x)的二阶导数
设函数y=y(x)由方程lny=tan(xy)所确定,求dy

左右对x求导有y'/y=sec²(xy)(y+xy')整理有y'=y²/(cos(xy)-xy)所以dy=(y²/(cos(xy)-xy))dx

求由方程cos(xy)=x^2*y^2所确定的函数y的微分

隐函数求导设z=x²y²-cos(xy)dy/dx=-(δz/δx)/(δz/δy)=-(2xy²+ysin(xy))/(2x²y+xsin(xy))=-y/x

求由方程cos(xy)=x^2*y^2 所确定的y的微分

-sin(xy)[ydx+xdy]=2xy^2*dx+x^2*2ydy-sin(xy)ydx-sin(xy)xdy=2xy^2*dx+2x^2*ydy-2x^2*ydy-sin(xy)xdy=2xy^

1、求由方程2y-x=(x-y)ln(x-y)所确定的函数y=y(x)的微分dy

第一题,这是个隐函数,两边对x求导得:2y'-1=(1-y')*ln(x-y)+(x-y)*(1-y')/(x-y)=(1-y')*ln(x-y)+(1-y')所以[3+ln(x-y)]y'=ln(x

设y=f(x)是由方程cos^2(x^2+y)=x所确定的方程 求f'(x)

两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。

设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydx|

方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1

求下列方程所确定的函数y=y(x)的导数dy/dx.

中间的2X^2Y,是说2X的2Y次方吗?还是打错了,2x*2y呢,再问:是2X的2次方乘以Y再答:恩,这种题的做法都是左右两边同时求导。右边对X求导得到3x^2+2*2xy+2x^2dy/dx-3y-

设函数 y=y(x) 由方程y平方-2xy=7所确定 求 dy/dx

对y^2-2xy=7求微分,得2ydy-2(ydx+xdy)=0,∴(y-x)dy=ydx,∴dy/dx=y/(y-x).

求由方程y=cos2(x+y)所确定的隐函数y=y(x)的导数 y`

y'=-2sin2(x+y)-2y'sin2(x+y)(1+2sin2(x+y))y'=-2sin2(x+y)y'=-2sin2(x+y)/(1+2sin2(x+y))

若y(x)是方程e^y=xy所确定的函数,求dy/dx?

两边求导e^y×y'=xy'+yy'=y/(e^y-x)dy/dx=y/(e^y-x)

求方程y^3-3y+2x=1所确定的隐函数的导数y'

将y看作是x的函数,则对x求导数有:3y^2*y'-3y'+2=0求出y'=2/3(1-y^2)其中y^2,y^3表示幂函数

求方程所确定的隐函数y=y(x)的一阶导数

看书看书,都是没认真看书闹的,书上写得明明白白清清楚楚,举手之劳,翻翻书就有了.这是一个学习习惯的问题,你看给自己造成多大的困扰.  以上解法是先令    F(x,y)=(1/2)ln[(x^2)+(

由方程y的平方-2xy+9=0所确定的隐函数y(x),求dy/dx

设dy/dx=y'.求导,2yy'-2y-2xy'=0dy/dx=y'=y/(y-x)

求方程x^2-xe^y=0所确定的隐函数的导数y'x

两边对x求导,则2x-[e^y+x(e^y)y']=0整理得y'=(2x-e^y)/(xe^y)

已知函数y是方程xy-lny=1+x^2所确定的隐函数,求 y'

第一步方程两边对x求导记y+xy'-y'/y=2x第二步解出y'记y'=(2xy-y^2)/(xy-1)

求由方程e^y*x-10+y^2=0所确定得隐函数的导数.

微分得xe^ydy+e^ydx+2ydy=0,解得dy/dx=-e^y/(xe^y+2y)

已知x=√3-√2,y=√3+√2,求x3y+xy3

x3y+xy3=xy(x^2+y^2)=(√3-√2)(√3+√2)((√3-√2)^2)+(√3-√2)^2)=1*(3-2√6+2+3+2√6+2)=10

求下列所确定的隐函数方程y=y(x)的导数.

xy+sin(x+y)=1,两边求导数y+xy'+cos(x+y)*(1+y')=0xy'+cos(x+y)y'=-[cos(x+y)+y]∴y'[cos(x+y)+x]=-[cos(x+y)+y]∴

已知x-y=l,xy=2,求x3y-2x2y2+xy3的值.

∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.