求函数u=x y z在球面x² y² z²=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:04:09
求全微分一般有三种解法:1.直接求偏导法等式两边同时对x求偏导(此时z看成是关于x的多元函数,y看成常量),化简得出z对x的偏导;同理可得z对y的偏导.最后dz=(z对x的偏导)*dx+(z对y的偏导
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z
先对x求偏导u'x=f'(x,xy,xyz)+yf'(x,xy,xyz)+yzf'(x,xy,xyz)所以u'xy=yf''(x,xy,xyz)+xzf''(x,xy,xyz)+f''(x,xy,xy
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)
由基本不等式:3√(xyz)≤(x+y+z)/3(当且仅当x=y=z时,取等号)所以:(xyz)≤[(x+y+z)/3]^3(xyz)≤[a/3]^3=a^3/27所以,当x=y=z时,xyz有最大值
令F(x,y,z)=x^2+y^2+x^2-1则球面的法向量为(Fx,Fy,Fz)=(2x,2y,2z)Fx表示F对x的偏导则在点M(0,0,1)处球面的法向量(0,0,2)则与这个法向量方向相同的单
为了书写简单,这样记:x+y+z=uxyz=vez/ex=m【e是指偏导的意思】ez/ex=ef/eu*eu/ex+ef/ev*ev/ex=ef/eu*(1+ez/ex)+ef/ev*(yz+xyez
对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)
利用拉格朗日求导法,建立拉格朗日函数L=xyz-λ(x^2+y^2+z^2-16),L分别对x,y,z求导可以得到yz-2λx=0,xz-2λy=0,xy-2λz=0,分别用x,y,z表示λ,可以得到
∂u/∂x=[∂u/∂(xy)][d(xy)/dx]+[∂u/∂(x/y)][d(x/y)/dx]=yf₁'+(1/
先求出球面外法线方向的方向矢量(法矢量):f'x=2x,f'y=2y,f'z=2z.得法矢量为(x0,y0,z0)单位化:1/√(x0^2+y0^2+z0^2)(x0,y0,z0)=(x0,y0,z0
第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方
可以用球面坐标变换去做:下面过程中a=(根号5)*r设x=acosp,y=asinpcosq,z=asinpsinq,p,q的范围是[0,Pi/2]则f=a^3cosp(sinp)^4cosq(sin
d(x+y+z)=d√(x+y+z)dx+dy+dz=1/2√(xyz)d(xyz)dx+dy+dz=1/2√(xyz)(yzdx+xzdy+xydz)(1-xy/(2√xyz))dz=[yz/(2√
是这样的,y'(u)*u'(x)=(-2u'/u^2)*(e^x)这一步做了件多此一举的事情y'(u)是y这个函数对u求导,也就是说,u本身就是自变量了不看做复合函数不可以写成(-2u'/u^2),u
为方便,记p=√(x^2+y^2+z^2)对x求导:yz+xyz'x+(x+zz'x)/p=0,得:z'x=-(yz+x/p)/(xy+z/p)同样,对y求导,得:z'y=-(xz+y/p)/(xy+