求下列线性空间的维数与一组基 p n*n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:58:25
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
任取数域P上任意两个n维线性空间V1,V2.取V1上的一组基a1,a2,···,an;取V2上的一组基b1,b2,···,bn.则任意向量a属于V1有a=k1a1+k2a2+···+knan;构造映射
P[X]n是数域P上次数不超过n的所有多项式的集合则1,x,x^2,...,x^(n-1)是P[x]n的一组基,其维数为n.
一组基:1,x²,x³,...,x^n所以维数是n
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
既然都是n维空间了,一组基当然就是n个无关的向量.
首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再
在空间中任取一个向量b加入这n个线性无关的向量ai(i=1,2,...,n)那么这n+1个向量一定是线性相关的故存在一组不全为0的ki(i=1,2,...,n)和c使得k1*a1+k2*a2+...+
正确.因为与A可交换的矩阵为对角矩阵.[-1,0;0,0],[0,0;1,0],[2,0,0,1]为所求的一组基.这样可以么?
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
我只能告诉你方法了,因为这个过程相对比较复杂1、把这些向量作为列向量组成矩阵2、然后对其初等行变换,将其化成阶梯型矩阵(关于什么是阶梯型矩阵我想百度百科应该比我讲得详细3、然后确定的极大线性无关组就是
W就是由基础解系张成的空间,因此维数是基础解系中向量的个数,一组基就是基础解系了.容易知道,(-1,1,0,0),(1,0,1,0),(1,0,0,1)是x1+x2-x3-x4=0的基础解系,因此是W
公理化定义给定域F,一个线性空间即(向量空间)是个集合V并规定两个运算:向量加法:V×V→V记作v+w,∃v,w∈V,标量乘法:F×V→V记作av,∃a∈F及v∈V.符合下列公
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩