正无穷到0的e的-x次方的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:18:56
x^2*e^(-x^2)dx=-(x/2)d(e^(-x^2))由上式用"分部积分公式",得到前面一部分是-(x/2)*(e^(-x^2))l上面正无穷,下面负无穷,这一项的值为零,后面一部分还是一个
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
∫[0,+∝]dx/(4+x^2)=(1/2)arctan(x/2)|[0,+∝]=(1/2)(π/2)=π/4再问:能不能详细的写一下求1/(4+x^2)的步骤。。。。。再答:∫dx/(4+x^2)
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
∫[-∞,+∞]e^t²dt=2∫[0,+∞]e^t²dt>2∫[0,+∞]dt=+∞所以上面的无穷积分是发散的.泊松积分是∫[0,+∞]e^(-t²)dt=√π/2再问
a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679
收敛,做变量替换,令x^2=t,华为sint/(2根号t)的广义积分,用dirichlet判别法判别.注意0点不是瑕点
这是一个暇积分,这其实不是求积分,而是求极限,用e的-2x的原函数也就是-1/2e的-2x次方在x趋向于正无穷的极限减去原函数在0点的函数值,因为x趋向于正无穷时分母趋向于正无穷(因为是-2x次方嘛.
求原函数.再问:求详解
用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大
同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!
∫[0,+∞)x^n*e^(-sx)*dx=1/s^(n+1)∫[0,+∞)t^[(n+1)-1]*e^(-t)dt(设t=sx)=1/s^(n+1)*Γ(n+1)=n!/s^(n+1)
∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2
给你讲过了,我懒得打了.你做完之后把答案贴出来把
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1
详细积分过程, 包括取极限, 以及关键步骤的解释, 请见下图.点击放大,再点击再放大.(稍等几分钟,图已经传上)
用分部积分化为一个特殊的定积分可以求出其值.
∫dx/x²=-1/x+Cx→+∞,则-1/x→0x→0,则-1/x→∞即x→0时极限不存在所以这个广义积分不存在