正方形abcd中,点g,f在bc,cd上,∠eaf等于∠cef等于45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:44:08
正方形abcd中,点g,f在bc,cd上,∠eaf等于∠cef等于45度
已知在正方形ABCD中,点E.F.G.H分别在AB.BC.CD.DA上,且EG垂直于FH,求证EG=FH.

证明:分别过点G、H作GN⊥AB,HM⊥BC,垂足分别为N,M,则∠GNE=∠HMF=90°且易得GN=HM,由正方形ABCD得∠B=90°,由EG⊥FH得∠EOF=90°所以∠OEB+∠BFO=18

如图,在正方形abcd中,e是对角线ac垂直一点,ef垂直bc于点f,eg垂直cd于点g.

1是因为正方形abcd为正方形ac对角线所以ac平分角bcd所以角acb等于角acd45度因为e在ac上egef分别垂直于bcdc角efcegc都为90度三角形efcegc为等腰三角形四边形efcg为

已知,如图,在正方形ABCD中,点G是BC延长线上一点,连接AG分别交BD、CD于点E、F.CG=nCE

(1)因为ABCD是正方形所以AB=BC,角BAE=角BCE.又BE=BE所以三角形BAE全等于三角形BCE所以角BAE=角BCE因为角BCE=角CEG+角G所以角BAE=角CEG+角G因为n=1时C

如图1,在正方形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且AE=BF=CG=DH

(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵HA=EB=FC=GD,∴AE=BF=CG=DH,∴△AEH≌△BFE≌△CG

如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中点

因为正方形ABCD对角线AC和BD所以AC=BDAB=AD=DC=BCAO=BO=CO=DO因为点E,F,G,H分别是AO,BO,CO,DO的中点所以EG,FH为四边形的对角线EO=FO=GO=HOE

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

如图在正方形ABCD中,点E为BC边上一点,过点B做BG垂直于AE于G,延长BG至点F,使角CFB=45度,

1、过C点作BF的垂线,垂足为H点,则∠FCH=45,∴HF=HC,∵AE⊥BG,∴易证:∠BAG=∠CBH∴易证:△BAG≌△CBH∴AG=BH,BG=CH∴BG=FH∴AG=FG2、连接AF,由1

​如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中

只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条

已知,在正方形ABCD中,点E.F.G.H分别在AB.BC.CD和DA上,且EG垂直于FH,求EG=FH.

(请按如下描述同时作图)证明:作FM⊥DA,EN⊥CDEG与FH交于O;EN与FH交于S∵ABCD是正方形∴FM=AB=BC=EN,且EN⊥FM∵EG⊥FH∴∠EGN=∠ESO∵EN⊥FM∴∠FHM=

如图,在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,并且AE=BF=CG=DH.

因为AE=BF=CG=DH所以BE=FC=DG=AH又ABCD为正方形,所以∠A=∠B=∠C=∠D所以三角形AEH全=BEF=FCG=HDG所以∠AEH+∠AHE=90度,EF=FG=GH=HE所以∠

在正方形ABCD和正方形OEFG中,点A和点F的坐标分别为

那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图,在正方形ABCD中,点E,F,G分别在BC,CD,DA上,且GE⊥BF于点M.求证:BF=GE

证明:过G做GH⊥BC,H是垂足,交BF于N.则RT△BNH∽RT△GNM,有∠EGH=∠FBC而:GH=BC所以:RT△BFC≌RT△GEH所以:BF=GE

如图一,正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上靠近A、B、C、D的n等分点,连结AF、BG、C

这题不难,这里正方形边长看成n(注意不要看成1,计算方便),在此时解这题的关键就是求出正方形MNPQ面积由题有:AE=BF=CG=DH=1,多边形MNPQ和多边形ABCD均为正方形.∵BN是直角三角形

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

在正方形ABCD中,点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,AF、DE相交于点G,连

是正方形首先,肯定是平行四边形,因为点M、N、P、Q分别是中点,所以MN//PQ//AF,MQ//PN//DE所以MNPQ是平行四边形显然,三角形ADF和三角形DCE全等,所以角AFD=角DEC,DE

已知:在正方形ABCD中,点E、F、G、H分别在AB、BC、CD和DA上,且EG⊥FH,求证:EG=FH

 如图,作AM∥HF,BN∥EG则AM⊥BN  ∠NBC=90º-∠AMB=∠MAB⊿NBC≌⊿MAB﹙ASA﹚ ∴AM=BN而AM=FH,BN=EG