梯形abcd中,e,f,m分别是ab,dc,bc,的中点,且me=mf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:18:26
证明:因为N,E,F分别为BC,BM,CM中点所以NE,NF都是三角形BCM的中位线所以NE//CM且NE=1/2CM又CF=MF所以NE//MF且NE=MF所以四边形MENF是平行四边形同理四边形B
呃.ME=NF,今天碰到第4个人问了.第一问可以证me/ad=be/ba=cf/cd=nf/ad所以me=nf不懂可以再问我哈再问:为什么be/ba=cf/cd。。。。喂,拜托教教我再答:呃。。你们这
证明:由三角形中位线定理可得EN∥CM且EN=1/2CM,FN∥BM且FN=1/2BM,所以四边形MENF是平行四边形,再由SAS可得△ABM≌△DCM,2)、由△ABM≌△DCM所以BM=CM,所以
连结BD,AC∵M,N,E,F分别是边AD,BC,AB,DC的中点∴MN∥=EF∥=1/2BD(中位线的性质)∴MF∥=NE∥=1/2AC∵AB=CD∴AC=BD∴MENF是菱形
连接AF并延长交BC延长线于点G,证△ADF≌△GCF(AAS)AD=CG,由三角形中位线可知,EF∥BC∥AD,EF=二分之BG=二分之(BC+CG)=二分之(BC+AD)看明白了吗?图片传不上去,
已知ABCD为梯形,M为AD的中点得MB=MCMBC为等腰三角形N为BC的中点E为BM的中点得EN//MC得BEN为等腰三角形,且EB=EN又EB=EM得EM=EN同理可证FM=FNMB=MCME=E
已知ABCD为梯形,M为AD的中点得MB=MCMBC为等腰三角形N为BC的中点E为BM的中点得EN//MC得BEN为等腰三角形,且EB=EN又EB=EM得EM=EN同理可证FM=FNMB=MCME=E
连接AC,BD∵M,E分别是AD,AB的中点∴ME是△ABD的中位线∴ME=1/2DB同理,FN=1/2DB,MF=1/2AC,NE=1/2AC∴ME=FN,MF=NE∵梯形对角线相等∴AC=DB∴M
∵M、N分别是等腰梯形上下底的中点,∴MN是等腰梯形的对称轴,∴MB=MC,又∵E、F分别是MB、MC的中点,∴ME=MF,考察△BMC,EN是中位线,∴EN∥MF,同理:FN∥EM,∴四边形MENF
因为F,N为CM,BC中点,则FN//BM,同理EN//CM所以MENF为平行四边形又因为AB=CD,M为AD中点,所以三角形ABM与DCM全等,所以BM=CM所以MF=ME,邻边相等的平行四边形为菱
∵点E为BM的中点点N为BC的中点∴EN//MC同理:FN//MB∴四边形ENFM为平行四边形又∵该四边形为等腰梯形∴∠A=∠DAB=CD又∵点M为AD中点∴AM=DM∴△ABM≌△DCM∴BM=CM
1.∵EN是△BCM的中位线,FN是△MCB的中位线∴EN‖MC,FN‖BM∴平行四边形MFNE证△MAB≌△MDC(这个不用我说了吧)∵E,F分别是BM,CM的中点∴EM=MF∴菱形MFNE2.MN
∵ABCD是等腰梯形,∴AB=CD,∠A=∠D,∵M为AD的中点,∴AM=DM,∴ΔABM≌ΔDCM(SAS),∴BM=CM,∵E、F、N分别为BM、CM、BC的中点,∴NF、NE是ΔBCM的中位线,
6x2 -ax-3=(3x+1)(2x+b)=6x2+3bx+2x+b,3b+2=-a,b=-3,a=7,b=-3,故答案为:7,-3.
连接EF,∵E、F分别为梯形两腰的中点,∴EF∥BC,∴∠MFE=∠CMF,∠MEF=∠BME,∵ME=MF,∴∠MFE=∠MEF,∴∠CMF=∠BME,在ΔBME与ΔCMF中,ME=MF,∠BME=
证明:连结EM、MF、EN、NF.∵E、M、F分别是AD、BD、BC的中点,∴EM=1/2AB,MF=1/2CD.又∵EF与MN互相垂直平分∴四边形EMFN是菱形∴EM=MF∴AB=CD
你这个题目有问题,个人认为是梯形ACBD,不是ABCD.如果题目是我说的那种,这个梯形是等腰梯形.
连AC因为E.N是中点所以EN平行等于二分之一的AC同理MF平行等于二分之一的AC所以MF平行于EN同理EM平行于NF又AB=CDM是AD中点所以EM等于MF同理EN等于NF所以MENF是菱形
(1)证明:∵四边形ABCD为等腰梯形,∴AB=CD,∠A=∠D.∵M为AD的中点,∴AM=DM.(2分)∴△ABM≌△DCM.(1分)∴BM=CM.(1分)∵E、F、N分别是MB、CM、BC的中点,
记EF与MN的交点为O∵E、N、F、M分别是边AB、BC、CD、DA的中点∴EN∥AC,MF∥AC∴EN∥MF同理ME∥NF∴MENF为平行四边形∵EN=1/2AC,ME=1/2BDAC=BD∴ME=