d∫cost^2dt dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:09:37
d∫cost^2dt dx
∫1/1+cost dt

写成∫sec^2(t/2)d(t/2)=tant/2答案是错了,你是对的

求定积分∫(-π/2,0) cost/根号下(1+cost)dt

∫(-π/2,0)cost/√(1+cost)dt=∫(-π/2,0)(2cos²2t-1)/(√2cos2t)dt=∫(-π/2,0)(2cos²2t-1)/(√2cos2t)d

令x=cost,变换方程d^2y/dx^2-x/(1-x^2)*dy/dx+y/(1-x^2)=0

d^2y/dx^2=d(dy/dx)/dx=d(-dy/(sintdt))/(-sintdt)=(-(d^2y/dt*sint-dy/dt*cost)/(sint)^2)dt/(-sintdt)=d^

(sint cost)^2 的不定积分

∫(sint·cost)²dt=∫(½·sin2t)²dt=1/4·∫(sin2t)²dt=1/4·∫(1-cos4t)/2dt=1/8·∫(1-cos4t)d

x=(e^t)sint y=(e^t)cost 求d^2y/dx^2

dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d

设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc

∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx

d/dx定积分(0~x^2) (1+t^2)^(1/2)dt d/dx定积分(0~x^2)(x^1/2)cost^2dt

1、=2x(1+x^4)^(1/2)2、=d/dx(x^1/2)*∫(0~x^2)cost^2dt=(1/2)x^(-1/2)*∫(0~x^2)cost^2dt+(x^(1/2))*cos(x^4)*

高数中若dy/dt=(dy/dx)*cost 那么d^2 y/dx^2 怎么求

y和x都是t的函数,而y又是x的函数.dy/dt求导直接=y''(t)dy/dx就不能直接出答案了,先转化为(dy/dt)*(dt/dx)然后求导,这样求出来都是关于t的导数

请教高手一道不定积分:∫√(1+cost^2)dt

cost^2是t平方的余弦值还是t余弦值的平方?是这样,类似∫√(1-ksint^2)dt(0

∫cost/(sint^2) dt =∫dsint/sint^2 =-1/sint + C

中间那步不用那样的.因为d(sint)=costdt,先把cost换到d里面就是:原式=∫【1/(sint^2)】dsint设sint=x化为∫(1/x^2)dx=-1/x+C再把x换回sint

验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=

x=e^t*sinty=e^t*cost所以dx/dt=e^t*(sint+cost),dy/dt=e^t*(cost-sint)故dy/dx=(dy/dt)/(dx/dt)=(cost-sint)/

∫sint/(cost+sint)dt

∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s

已知参数方程x=t+t^2,y=cost.求导数dy/dx和d^2y/dx^2

x=t+t^2,y=cost所以dx/dt=1+2t,dy/dt=-sint于是dy/dx=(dy/dt)/(dx/dt)=-sint/(1+2t)而d^2y/dx^2=(dy/dx)/dt*dt/d

求∫∫y^2dσ,其中D是由摆线x=a(t-sint),y=a(1-cost)(0≤t≤2π)的一拱与x轴所围成

先积y,∫∫y²dσ=∫[0---->2πa]dx∫[0--->y(x)]y²dy=(1/3)∫[0---->2πa]y³(x)dx换元:令x=a(t-sint),则y(

∫dt/(1+cost)

∫1/(1+cost)dt,cos2t=2cos²t-1==>cost=2cos²(t/2)-1=∫1/[2cos²(t/2)]dt=∫sec²(t/2)d(t