根号x 1 x)n的展开式第8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:44:01
Tr+1=T4=C(n,3)[2x^(1/2)]^(n-3)*[(-x^(-1/2)]^3.T4=C(n,3)2^(n-3)*x^[(1/2)*(n-3)]*[-x^(-3/2)]∵第四项为常数项,∴
回答是n=12因为第四项是A*x^((n-3)/3)*x^-3为常数项,所以n=0
2(n!/(n-9)!)=n!/(n-8)!+n!/(n-7)!n=14或n=23
即C(n8),C(n9),C(n10)成等差数列.2C(n9)=C(n8)+C(n10)2×n×(n-1)×...×(n-8)/(1×2×...×9)=n×(n-1)×...×(n-7)/(1×2×.
汗```这个题是很有难度的知道吗?(意思就是说你给的分太低啦!)算了,还是告诉你吧.谁让我太喜欢`太精通数学了.解题方法如下:根据二项展开公式的通项公式可得:原式第9项,第10项,第11项的二项式系数
由二项式通项公式T(r+1)可求n=21为奇数,所中间两项的系数最大,即为第11项和第12项你要注意公式是r+1项,求出r后要加上1
C(n,8)(x^2/2)^(n-8)(-x^(-1/2))^8=C(n,8)(1/2)^(n-8)x^(2n-16-4),2n-20=0,n=10-------------------C(10,k)
题目有歧义,能再加几个括号不再问:哪有歧义???再答:1/2x^2的^2在哪谁上?再问:1/2和x是可开的,在x上
展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5
T1=C(n,0)*x^n*(1/2√x)^0系数是C(n,0)*(1/2)^0=1T2系数是C(n,1)*(1/2)^1=n/2T3系数是C(n,2)*(1/2)^2=n(n-1)/8前三项的系数成
第4项和第9项的二项式系数相同,∴c(n,3)=c(n,8),n=11.T=c(11,r)(√x)^(11-r)*(-2/x)^r=c(11,r)*(-2)^r*x^[(11-3r)/2],依题意(1
T(r+1)=C(n,r)*a^(n-r)*b^r,(此为二项式通项公式)T(9),即有,9=r+1,r=8,(1+根号x)^n的展开式中第9、10、11项的二项式系数分别为:C(n,8),C(n,9
题目有问题(√x-1/x)^n第2项T2=C(n,1)*(√x)^(n-1)*(-1/x)第3项T3=C(n,2)*(√x)^(n-2)*(-1/x)^2第2项与第3项的二项式系数之和=n(n-1)/
展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,
2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5
T(r+1)=Cn(r)*x^(n-r)*(-1/根号X)^r=Cn(r)*(-1)^r*x^(n-r-r/2)第五项是常数项,即r=4时,n-r-r/2=0得到n=6展开式中各项的二项式系数和为2^
Tr+1=T4=C(n,3)[2x^(1/2)]^(n-3)*[(-x^(-1/2)]^3.T4=C(n,3)2^(n-3)*x^[(1/2)*(n-3)]*[-x^(-3/2)]∵第四项为常数项,∴
(1)杨辉三角,计算展开式系数kn11,11,2,11,3,3,11,4,6,4,11,5,10,10,5,11,6,15,20,15,6,1(2)通式表达,(a+b)^n=ki*a^(n-i)b^i
C(n,3)=C(n,7)n=3+7=10再问:C(n,3)=C(n,7)3是什么7是什么再答:第4项,及第8项再问:那应该是C(n,4)=C(n,8)呀再答:因为第1项为C(n,0)再问:哦哦哦哦明
第7项的二项式系数是C(6,n),第8项的二项式系数是C(7,n),则:C(6,n)=C(7,n),则:n=131、二项式系数最大的是第7和第8项;2、T(r+1)=C(r,n)(2x)r,则第r+1