极坐标方程cos=根号2 2(p大于等于0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:15:14
(2,π/2),(2,0)初学者可以将极坐标系转化为直角坐标系,虽然稍微麻烦,但是相对容易,等熟练之后可以直接在极坐标系中计算.根据ρ²=x²+y²,x=ρcosθ,y=
C1化为普通方程为(x+2)^2+y^2=10,中心坐标(-2,0),半径r1=√10;C2化为普通方程为x^2+y^2=2x+6y,配方得(x-1)^2+(y-3)^2=10,中心(1,3),半径r
展开余弦得p=2(cos@-sin@),即p^2=2pcos@-2psin@我们注意到极坐标与直角坐标变换公式x=pcos@,y=psin@.则p^2=x^2+y^2,于是普通方程为x^2+y^2=2
不是把...高中数学题也发上来问?.不去问老师?老师太凶?.那就问同学嘛.而且COSX是不能等于2除以根号2的范围在-1到1之间,你不会把个错题发上来把,请发正确的题,
=1+cosθ=1+2cos²(θ/2)-1=2cos²(θ/2)再问:是直角坐标系方程。再答:r=1+cosθr=1+x/rr^2=r+xx^2+y^2=√(x^2+y^2)+x
由题可得直角坐标方程:(x+1)^2+(y-根号3)^2=9设z=x+根号3y当直线z=x+根号3y与圆相切时有最值,即有|-1+3-z|/根号(1+3)=3|z-2|=6z最大=8,z最小=-4即x
(1)ρ=6cosθ即ρ^2=6ρcosθ,化为直角坐标方程为x^2+y^2=6x,再化为圆的标准方程为(x-3)^2+y^2=9.所以C点坐标为(3,0).ρsin(θ+π/4)=√2,即ρ(sin
p=cos(π/4)cosθ+sin(π/4)sinθp^2=pcos(π/4)cosθ+psin(π/4)sinθx^2+y^2=√2/2(x+y)
p^3=2sinθ*p*cosθ*p(x^2+y^2)^(1.5)=2xy
没错啊ρcosθ=4sinθcosθcosθ=0或ρ=4sinθ对的再问:是个选择,只有直线和圆的选项,是不是不要抠字眼?再答:什么啊,具体再问:再答:C采纳
ρ^2cosθ-ρ=0ρ(ρcosθ-1)=0ρ=0或ρcosθ=1即(0,0)或x=1解法二:ρ(ρcosθ-1)=0将x=ρcosθ,ρ=±√(x^2+y^2)代入得±√(x^2+y^2)(x-1
化极坐标方程p^2cosθ-p=0的直角坐标方程p^2cosθ-p=0,p(pcosθ-1)=0,p=0或p*cosθ-1=0,p^2=0或p*cosθ-1=0,x^2+y^2=0(即坐标原点)或x-
x^2+y^2-4x-4y+6=0(x-2)^2+(y-2)^2=2
先化成ρ=4sinθρ²=4ρsinθρ²=x²+y²,ρsinθ=y所以x²+y²=4y也就是x²+(y-2)²=4是
p^2=2psinθ+pcosθx^2+y^2=2y+x.所用公式如下p^2=x^2+y^2pcosθ=xpsinθ=y
p=√2cosθ圆心在极轴上,直径就是√2∴圆心的极坐标(√2/2,0)
p=4cosθ/(1-cos2θ)=4cosθ/(2sin^2θ)=2cosθ/(sinθ)^2p(sinθ)^2=2cosθ(psinθ)^2=2pcosθ由x=pcosθ,y=psinθ代入得:y
p=4cosα两边同乘以p可得p^2=4pcosα将p^2=x^2+y^2,pcosα=x代入上式得x^2+y^2=4x即(x-2)^2+y^2=4
因为圆C的极坐标方程为ρ=2√2sinA所以ρ^2=2√2*ρsinA故x^2+y^2=2√2y所以x^2+(y-√2)^2=2