服从指数分布求极大似然估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:06:15
你要理解“极大”的含义,“极大”就是“所有样本同时发生的概率最大”,所有样本同时发生的概率就是他们单独概率的乘积,就是L(p)=f1(p)f2(p)…fn(p)最大,而为了方便计算,两边同时取对数In
见图再问:你好,你的答案前面和后面我都仔细看懂了,X(n)的概率密度为什么是nX(n-1)/θ(n)?真诚期待你的答案。再答:你看看教材吧。最大次序统计量的概率密度如何求,教材上明明白白地写着啊。在独
不难吧,按照正常的步骤即可得,答案应该是K/Xbar,Xbar是样本的均值.
参数为δ.L(δ)=f(ξ1,ξ2,...,ξn;δ)=f(ξ1)f(ξ2)...f(ξn)=[(1/2δ)^n]*exp{-(1/δ)(|ξ1|+|ξ2|+...|ξn|)}为方便暂记|ξ1|+|ξ
设X~EXP(入)E(X)=1/入^入=1/(xbar)L(入|x)=π(连乘符号)(i=1~n)入e^(-入xi)两边取对数,并使ln(L)=ll(入|x)=ln(入^n)+(-入)Σ(xi)求导l
先求单个灯泡工作1000小时后仍可使用的概率对于指数分布期望EX=1/λ=5000于是其分布参数λ=1/5000=0.0002概率密度f(x)=λe^(-λx)x>0分布函数为F(X)=∫λe^(-λ
.求极大似然函数估计值的一般步骤:(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数;(4)解似然方程所谓矩估计法,就是利用样本矩来估计总体中相应的参数.最简单的矩估计法是用一阶样本原点
x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道
套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂 谢谢了再答:
详细解答如下,点击放大:
有标准的计算方法,如图.经济数学团队帮你解答.请及时评价.再问:再问:那这道题是怎么做啊?麻烦下谢谢了再答:1、如果前面的回答满意,请先采纳。2、你的提问不清楚,X的分布是什么?再问:再问:采纳了,麻
设总体X服从(0-1)分布,P(X=1)=p,P(X=0)=1-p.似然函数L(p)=p^x1(1-p)^(1-x1)*...*p^xn(1-p)^(1-xn)=p^(x1+...+xn)*(1-p)
设总体X的概率密度为f(x)=Өx^(Ө-1),0
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
C.若存在Xi=min(X1,X2,..,Xn).此时似然函数就是e^-(X1+X2+..+Xn-ntheta)theta取min(X1,X2,..,Xn)达最大
矩估计法EX=∫xf(x)dx=(θ+1)/(θ+2)--->θ=(1-2EX)/(EX-1)极大似然法L(x,θ)=(θ+1)^n(x1.x2...xn)^θLn(L(x,θ))=nLn(θ+
再答:�����再问:??再答:什么情况?再问:能帮我做一下再问:新的问题再答:可以再问:发图噢再答:你发过来吧再问:再答:不好意思力学都忘了再问:……再答:你什么专业?
所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计