有一垄断厂商TC=6Q 0.05Q2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:48:44
有一垄断厂商TC=6Q 0.05Q2
已知某完全垄断厂商面临的需求曲线为Q=60-P,总成本曲线为TC=0.5Q^2-Q+200.求:(1) 这个市场上的均衡

(1)市场均衡时边际利润等于边际成本即MR=MC利润R=PQ-TC=(60-Q)Q-0.5Q^2-Q+200则MR=60-2Q-Q-1=59-3QMC=Q-1则MR=MC为59-3Q=Q-1即Q=15

某垄断厂商成本函数TC=0.5Q^2+10Q,产品的需求函数为P=90-0.5Q.计算售价P=55时垄断者提供的产量和赚

当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由

某垄断厂商的产品需求函数为P = 1760-12Q,成本函数为TC =1/3Q^3-15Q^2+5Q+24000

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某垄断竞争厂商的短期成本函数为TC=0.6Q*Q+3Q+2

好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-

请教微观经济学计算题:垄断市场需求曲线P=56-Q,垄断厂商1的成本函数TC=8Q,垄断厂商2的成本函数TC=Q∧2,当

设Q1,Q2,Q=Q1+Q2,利润=PO-TC1-TC2,(为关于Q1,Q2的二元函数),利润分别对Q1,Q2求偏导数等于0,组成二元一次方程组,解出Q1,Q2,即为两个厂商的产量,进而算出价格.

假设一个垄断厂商面临的需求曲线为P=10–3Q,成本函数为TC=Q^2+2Q,求该厂商利润极大时的产量,价格和利润?

由题意得:MR=10-6QMC=2Q+2利润极大时MR=MC得:Q=1P=10-3Q=7利润R=PQ-TC=8Q-4Q2=4

微观经济学的题 完全垄断厂商TC=0.5Q2+10Q,国内需求P=100-Q.•(1)计算厂商均衡产量、价格

第一问,厂商利润函数π=P*Q-TC=-1.5Q^2+90Q利率润最大化条件π‘=0得出Q=30则P=70计算得利润=1350第二问若P>55厂商与外商平分市场;厂商市场份额Q=(100-P)/2;厂

某垄断厂商的产品需求函数为P = 10-3Q,成本函数为TC = Q2 + 2Q,垄断厂商利润最大时的产量、价格和利润

垄断厂商利润最大化的条件是MR=MCMR=dTR/dQ=d(P*Q)/dQ=10-6QMC=dTC/dQ=2Q+2由MR=MC得到10-6Q=2Q+2得到Q=1;P=7利润=TR-TC=4

设某垄断厂商的产品需求函数为P=12-0.4Q,总成本函数TC=0.6Q2+4Q+5,试求:

(1)总收益TR=PQ=12Q-0.4Q^2①对①求极值得,Q=15,P=6时MaxTR=90而总利润=TR-TC=90-200=-110(2)总利润不小于10得不等式TR-TC=8Q-Q^2-5≥1

假设一个垄断厂商面临的需求函数为P=10-3Q,成本函数为TC=Q2+2Q.

解.依题可得MR=10-6Q;MC=TC'=2Q+2利润最大时有MR=MC即10-6Q=2Q+2解得Q=1P=10-3=7利润=PQ-TC=1*7-(1+2)=4

垄断厂商产品的需求函数为P=12-0.4Q,总成本函数TC=0.6Q2+4Q+5,求

1MR=12-0.8QMC=1.2Q+4(都是求导得出)MR=MC时利润π最大12-0.8Q=1.2Q+4Q=4P=12-0.4Q=10.4总收益TR=PQ=4*10.4=41.6TC=30.6总利润

已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.

(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q

垄断厂商的边际收益有何特点?

垄断厂商的边际收益特点:边际收益低于价格.在非完全竞争(垄断)条件下,厂商的销售量同价格成反比.如果需求弹性大于1,即售量的增加的百分比,快于价格降低的百分比,总收益随销售量增加而增加;如果需求弹性小

垄断竞争厂商长期均衡有何特征

1)MR=MC,2)P=AR=AC.在长期,厂商可以任意变动一切生产投入要素.如果一行业垄断竞争市场出现超额利润或亏损,会通过新厂商进入或原有厂商退出,最终使超额利润或亏损消失,从而在达到长期均衡时整

1、已知某垄断竞争厂商的产品总需求函数为P=9400-4Q,成本函数为TC=4000+3000Q ,Q为产量.求

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

一垄断厂商成本函数为:TC=5Q(Q+4)+10,产品的需求函数为:Q=140-P.

联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.

假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和

收入R=PQ=9400Q-4Q2.2是只平方.对Q微分,边际收入MR=9400-8Q总成本TC=4000+3000Q对Q微分,边际成本MC=3000因为是垄断企业MR=MC求出Q=800所以P=620

假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数TC=4000+3000Q,求该厂商均衡时的产量,价格和利

按照MR=MC生产MR=9400-8QMC=30009400-8Q=30008Q=6400Q=800P=9400-4*800=6200利润π=TR-TC=PQ-4000-3000Q=6200*800-

已知某垄断厂商的成本函数为TC=0.6Q^2+3Q+2,需求函数为Q=20-2.5P ,求:

垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR