曲面z=1-x2-y2在点p处的法线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:53:29
曲面z=1-x2-y2在点p处的法线
曲面z=x+xy-1在点(1,1,1)处的法向量为 .

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

在空间直角坐标系下,点P(x,y,z)满足x2+y2+z2=1,则动点P表示的空间几何体的表面积是______.

在空间直角坐标系下,点P(x,y,z)满足x2+y2+z2=1,∴该方程是以原点为球心,1为半径的球,∴其表面积:S=4πR2=4π.故答案为:4π.

已知曲面z=1-x2-y2上的点P处的切平面平行于平面2x+2y+z=1,求点P处的切平面方程.

设切点为P(x0,y0,z0),故曲面在切点处的切平面的法向量为n={2x0,2y0,−1}又由于n∥(2,2,1),且切点P在曲面上∴2x02=2y02=−11x02+y02+z0=1解得:x0=y

曲面e^(2z)-z+xy=2在点(1,1,0)处的法向量为

(1,1,1)F(X,y,z)=e^(2z)-z+xy-2n=(F(对x求导),F(对y求导),F(对z求导))F(对x求导)=yF(对y求导)=xF(对z求导)=2e^(2z)-1代入得n=(1,1

求曲面z=x2+xy+zy2在(1,-1,2)处切平面方程.

z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-

曲面z=xy在点(1,2,2)处的法向量n

令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-

利用三重积分计算曲面z=6-x2-y2与z=x

设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2

已知P点在椭圆x2/25+y2/16=1上,P点坐标为(x,y),求z=4x-5y+6的最大值和最小值

(1)预备知识:a=cost-sint.===>a^2=1-sin2t.===>(a^2)max=2.===>则amax=√2,amin=-√2.(2)由题意,可设x=5cost,y=4sint.==

已知曲面x2^2+2y^2+3z^2=21上存在一点P与平面x+4y+6z=1的距离最近.试求出点P的坐标.

设P(x,y,z)是椭球面上一点,根据点面距离公式,d=|x+4y+6z-1|/√53,设目标函数D=(√53d)^2=53(x+4y+6z-1)^2,限制条件为:x^2+2y^2+3z^2-21=0

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.

由于曲面z=2-x2-y2及z=x2+y2所的交线是x2+y2=1,因此Ω在xOy面上的投影区域为D:x2+y2≤1∴Ω的体积为 V=∭Ωdv=∫2π0dθ∫10ρdρ∫2−ρ2ρ2dz=∫

重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积

极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=

求下列曲面所围成立体的体积:z=x2+y2,y=x2,y=1,z=a(设a充分大)

再问:额。。这只是单叶抛物面的体积吧。。不应该是围成的立体的体积么再答:我只是说最前面的那个曲面,后面的是抛物柱面这个不用画图,积分限很清楚的,就直接写了

(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,

求 曲面Z=4-X^2-Y^2在点P(1,1,2)处的切平面方程和法线方程

方程整理成为F(x,y,z)=x²+y²+z-4=0,切向量=(Fx,Fy,Fz)=(2x,2y,1)=(2,2,1),则法线(x-1)/2=(y-1)/2=(z-2)/1,切平面

曲面e*z-z+xy=3在点(2、1、10)处的切平面方程

写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量(1,2,e-1)由此得到切平面:(x-2)+2(y-1)

曲面z=x+xy-1在点(1,1,1)处的法向量为

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

计算下列曲面所围成立体的体积 z=x2+2y2 和 z=6-2x2-y2

两个曲面的交线可由以下方程组给定z=6-2x²-y²z=x²+2y²或x²+y²=2z=x²+2y²在 xy&

求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,

为方便,记p=√(x^2+y^2+z^2)对x求导:yz+xyz'x+(x+zz'x)/p=0,得:z'x=-(yz+x/p)/(xy+z/p)同样,对y求导,得:z'y=-(xz+y/p)/(xy+