曲面x y=1被z1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:01:19
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
|z1+z2|^2=(z1+z2)(z1共轭+z2共轭)=z1z1共轭+z1z2共轭+z2z1共轭+z2z2共轭=2+z1z2共轭+z2z1共轭同理|z1-z2|^2=z1z1共轭-z1z2共轭-z2
答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得
设z1=a+bi,z2=c+dia^2+b^2=1c^2+d^2=1因为z1+z2=-i所以a+bi+c+di=-i(a+c)+(b+d)i=-i所以a+c=0(实数部分),b+d=-1(虚数部分)得
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
(1,1,1)F(X,y,z)=e^(2z)-z+xy-2n=(F(对x求导),F(对y求导),F(对z求导))F(对x求导)=yF(对y求导)=xF(对z求导)=2e^(2z)-1代入得n=(1,1
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-
应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是
是双曲抛物面,或叫马鞍面,像马背上做人的马鞍.图形在百度上我的空间上也有.请观赏http://hi.baidu.com/三峡电力职业学院教授/blog/item/de80163f0e1023d47d1
面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面
xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0
surf(x,y,z)
共轭向量不好表示,我拍张图片给你,
|Z1+Z2|的平方=|Z1-Z2|的平方+4*|Z1|*|Z2|=3+4*1*2=11所以|Z1+Z2|=根号11
由已知可知Z1,Z2,Z1-Z2组成一个三角形,而且是等边三角形.长度都为1.|Z1+Z2|就是由两个等边三角形组成的菱形的对角线(长的那条)计算就可知长度为根号3
z2=i/(2i+1)
|z1|,|z1+z2|,|z1-z2|,|z2|四个线段组成以|z1|,|z2|为邻边,|z1+z2|,|z1-z2|为对角线的平行四边形,依平行四边形的性质:对角线的平方和等于四条边的平方和,有|
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)