曲面x y=1被z1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:01:19
曲面x y=1被z1
曲面z=x+xy-1在点(1,1,1)处的法向量为 .

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

已知|z1|=|z2|=|z1-z2|=1,则|z1+z2|=?!

|z1+z2|^2=(z1+z2)(z1共轭+z2共轭)=z1z1共轭+z1z2共轭+z2z1共轭+z2z2共轭=2+z1z2共轭+z2z1共轭同理|z1-z2|^2=z1z1共轭-z1z2共轭-z2

求曲面z∧2-xy=1上到原点最近的点

答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得

已知复数z1z2满足|z1|=|z2|=1z1+z2=-i,求z1.z2

设z1=a+bi,z2=c+dia^2+b^2=1c^2+d^2=1因为z1+z2=-i所以a+bi+c+di=-i(a+c)+(b+d)i=-i所以a+c=0(实数部分),b+d=-1(虚数部分)得

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

曲面e^(2z)-z+xy=2在点(1,1,0)处的法向量为

(1,1,1)F(X,y,z)=e^(2z)-z+xy-2n=(F(对x求导),F(对y求导),F(对z求导))F(对x求导)=yF(对y求导)=xF(对z求导)=2e^(2z)-1代入得n=(1,1

求曲面z=x2+xy+zy2在(1,-1,2)处切平面方程.

z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-

曲面z=xy在点(1,2,2)处的法向量n

令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-

作出曲面 z=xy被柱面x^2+y^2=1所围部分的图形,并求其面积.写出MATLAB程序

应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是

z=xy是什么曲面,怎么画出图像

是双曲抛物面,或叫马鞍面,像马背上做人的马鞍.图形在百度上我的空间上也有.请观赏http://hi.baidu.com/三峡电力职业学院教授/blog/item/de80163f0e1023d47d1

求平面x+y=1上被坐标面与曲面z=xy截下的在第一卦限部分的面积

面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面

求曲面xy-z^2+1=0上离原点最近的点

xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0

已知复数z1、z2满足|z1|=2,|z2|=1,|z1-z2|=2,z1/z2的值

共轭向量不好表示,我拍张图片给你,

复数 | Z1 |=1, | Z2 |=2, | Z1-Z2 |=根号3,求| Z1+Z2 |

|Z1+Z2|的平方=|Z1-Z2|的平方+4*|Z1|*|Z2|=3+4*1*2=11所以|Z1+Z2|=根号11

已知|Z1|=|Z2|=|Z1-Z2|=1

由已知可知Z1,Z2,Z1-Z2组成一个三角形,而且是等边三角形.长度都为1.|Z1+Z2|就是由两个等边三角形组成的菱形的对角线(长的那条)计算就可知长度为根号3

已知|z1|=|z2|=|z1-z2|=1,则|z1+z2|等于______.

|z1|,|z1+z2|,|z1-z2|,|z2|四个线段组成以|z1|,|z2|为邻边,|z1+z2|,|z1-z2|为对角线的平行四边形,依平行四边形的性质:对角线的平方和等于四条边的平方和,有|

曲面z=x+xy-1在点(1,1,1)处的法向量为

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

曲面sinz-z+xy=1在点(2,-1,0)出的法线方程

令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)