是n阶可逆矩阵的转置伴随矩阵,证明det

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:59:17
是n阶可逆矩阵的转置伴随矩阵,证明det
线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?

A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

A是可逆矩阵,证明A的伴随矩阵的逆等于A的逆的伴随矩阵

由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等

设N阶实方阵A不等于O,且A的伴随阵等于A的转置矩阵,证明A可逆.

由A*A=|A|E,A*=A'得A'A=|A|E.再由A不等于0,设aij≠0.则比较A'A=|A|E第j行第j列元素有a1j^2+a2j^2+...+aij^2+...+anj^2=|A|而A是实方

设A是n阶可逆矩阵,且A平方=/A/E,证明A的伴随矩阵A*=A

若A不可逆,则|A|=0.因为AA*=|A|E,所以AA*=0,又A*可逆,则A=0,这与A*可逆矛盾.所以A可逆

证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆

【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义

线性代数n阶实方阵A不等于0,且A的伴随矩阵等于A的转置矩阵,怎么证明A可逆?

核心:线性!第一章知识链线性代数核心就这么一点内容(考研的主要部分,不是全部喔!)线性方程组--->行列式--->矩阵--->向量--->向量

线性代数 证明题1.设n阶方阵A不等于O,且A的伴随矩阵=A的转置矩阵,求证A可逆.2.求证:若矩阵A的行列式=0,则A

1,2可由定理若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;其他情况r(A*)=0获证3可由AA*=(detA)E导出,将A按可逆不可逆分类讨论下即可

证明(A*)'=(A')*,并且若矩阵A可逆,则A*也可逆A*是指A的伴随矩阵,A'是A的转置

由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')

线代题:A的伴随矩阵等于A的转置矩阵,如何证明A是可逆矩阵?

条件应该有A≠0吧.n=2时,设A=abcd则伴随矩阵A*=d-b-ca由转置A‘=A*得a=d,b=-c.当讨论限制为实矩阵,行列式|A|=a²+b²>0,A可逆.复矩阵时有反例

设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是(  )

∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.

证明,设A为n阶可逆矩阵,A*与A的伴随矩阵,证(A*)=n

因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

矩阵不可逆时,矩阵伴随的转置等于矩阵转置的伴随吗?请稍微写一下证明过程

这个结论很显然正确!至于证明只要写出伴随矩阵再转置,和转置伴随就会发现相同了!

A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值?

因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值

如何证可逆矩阵的伴随矩阵可逆

证:因为AA*=|A|E,两边取行列式得|A||A*|=||A|E|=|A|^n由A可逆,所以|A|≠0.所以|A*|=|A|^(n-1)≠0所以A*可逆.注:事实上,对任意n阶方阵,|A*|=|A|

A为n阶可逆矩阵 对调ij行得B 问A的伴随与B的伴随关系

令P是对换ij行的排列阵那么B=PA由此得到adj(B)=adj(A)adj(P)把adj(P)算出来就行了事实上P=P^{-1},所以adj(P)=det(P)P^{-1}=-P也就是说adj(B)

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.