是n阶可逆矩阵的转置伴随矩阵,证明det
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:59:17
A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等
由A*A=|A|E,A*=A'得A'A=|A|E.再由A不等于0,设aij≠0.则比较A'A=|A|E第j行第j列元素有a1j^2+a2j^2+...+aij^2+...+anj^2=|A|而A是实方
若A不可逆,则|A|=0.因为AA*=|A|E,所以AA*=0,又A*可逆,则A=0,这与A*可逆矛盾.所以A可逆
【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义
核心:线性!第一章知识链线性代数核心就这么一点内容(考研的主要部分,不是全部喔!)线性方程组--->行列式--->矩阵--->向量--->向量
1,2可由定理若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;其他情况r(A*)=0获证3可由AA*=(detA)E导出,将A按可逆不可逆分类讨论下即可
由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')
条件应该有A≠0吧.n=2时,设A=abcd则伴随矩阵A*=d-b-ca由转置A‘=A*得a=d,b=-c.当讨论限制为实矩阵,行列式|A|=a²+b²>0,A可逆.复矩阵时有反例
∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
这个结论很显然正确!至于证明只要写出伴随矩阵再转置,和转置伴随就会发现相同了!
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值
证:因为AA*=|A|E,两边取行列式得|A||A*|=||A|E|=|A|^n由A可逆,所以|A|≠0.所以|A*|=|A|^(n-1)≠0所以A*可逆.注:事实上,对任意n阶方阵,|A*|=|A|
令P是对换ij行的排列阵那么B=PA由此得到adj(B)=adj(A)adj(P)把adj(P)算出来就行了事实上P=P^{-1},所以adj(P)=det(P)P^{-1}=-P也就是说adj(B)
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.