明:设n阶方阵A,B,满足A B=AB,证明:A-E可逆,并求A-E的逆阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:23:17
这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就
n阶矩阵乘积的秩有不等式r(AB)≥r(A)+r(B)-nAB=0,即有r(AB)=0,代入即得.还有一种想法,B的列向量都是线性方程组AX=0的解.于是AX=0解空间的维数n-r(A)应该≥B的列秩
A可逆,A^(-1)ABA=BA,因此AB与BA相似
因为 R(AB)=0所以 AB=0所以 R(A)+R(B)<=n.(C) 正确 搞定请采纳...
因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
由于AB=BA所以(A+B)^3=0可以展开成A(A^2+3AB+3B^2)=-B^3两边取行列式得|A||A^2+3AB+3B^2|=(-a)^n|B|^3由B可逆知右边不是0.所以|A|一定不能为
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
要用到若尔当矩阵,你学过没?比较长,我要是打了,你能立即把分给我不?
1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
DA^2=B^2,则|A^2|=|B^2||AA|=|BB||A||A|=|B||B||A|^2=|B|^2
AB-A-B=OAB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,逆为B-E再问:为什么(A-E)(B-E)=E?这个步骤能说清楚点吗?再答:AB-A-B+E=A(B-E)-(B-E)=(A
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB