方程x的平方-7x 12=0的两根为直角三角形的两条直角边,则其最小的余弦

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:29:08
方程x的平方-7x 12=0的两根为直角三角形的两条直角边,则其最小的余弦
设x1、x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4,求k的值.

解;x12+x22=4,即x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x2)2-2x1•x2=4,又∵x1+x2=2(k-1),x1•x2=k2,代入上式有4(k-1)2-2k

已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=______.

由已知,得x1+x2=-3,x1•x2=1,又∵x12+3x1+1=0,即x12=-3x1-1,∴x12+8x2+20=-3x1+8x2+19(设为a),与x1+x2=-3联立,得x1=-a+511,

已知方程mx2+2x+1=0,若方程的两实数根为x1,x2,且x12+x22=1,求m的值

x1+x2=-2/mx1x2=1/mx1²+x2²=(x1+x2)²-2x1x2=14/m²-2/m=1即m²+2m-4=0m=-1±√5有解则4-4

已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是

 再答:啧,反了,等等再答: 再答:望采纳

求作一个方程,使它的根是方程x的平方--7x+8=0的两根的平方的负倒数

设x1.x2为方程x²-7x+8=0的两根,则-1/x1²,-1/x2²为所求方程的两根,有x1+x2=7,x1x2=8所以(-1/x1²)(-1/x2&sup

已知:x1,x2是关于x的方程x2-(m-1)x+2m=0的两根,且满足x12+x22=8,求m的值.

∵x1、x2是方程x2-(m-1)x+2m=0的两个实数根.∴x1+x2=m-1,x1•x2=2m.又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2.将x1+x

已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是(  )

由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以3k2+16k+16≤0,所以(3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得

设方程2x2+3x+1=0的两个根为x1,x2,不解方程,作以x12,x22为两根的方程为______.

已知方程2x2+3x+1=0的两个根为x1,x2,则x1+x2=-32,x1•x2=12,所以x12+x22=(x1+x2)2-2x1x2=54,x12x22=(x1x2)2=14,∴x12,x22为

关于x方程x2-(k+2)x+2k+1=0的两实数根为x1与x2,且x12+x22=11.利用根与系数的关系.求一个一元

由韦达定理,有:x1+x2=k+2、x1x2=2k+1,又x1^2+x2^2=11,∴(x1+x2)^2-2x1x2=11,∴(k+2)^2-2(2k+1)=11,∴k^2+4k+4-4k-2=11,

已知方程x2-x-1=0,若两根为x1,x2,求x12/1+x22/1的值

方程x^2-x-1=0的两根为x1,x2,∴x1+x2=1,x1x2=-1.∴1/x1^2+1/x2^2=(x1^2+x2^2)/(x1x2)^2=(x1+x2)^2-2x1x2=1+2=3.

已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=____

因为x1,x2为方程的实根.则有x1+x2=3-t,x1x2=t^2-9.(t-3)^2-4(t^2-9)=0.则有t^2+2t-15=0即-5=t=3.x1^2+x2^2=(x1+x2)^2-2x1

)已知一次函数y=mx+k的大致图象如图所示,方程mx2+(m-1)x-1=0的两根x1和x2,满足关系式x12 +x2

由你说的直线图像可知,m>0,k>0.对后面方程进行化简可得:(mx-1)(x+1)=0,所以一个根为-1,另x1=-1,则x2=1/m再把x1,x2代入后面的关系式,解出m值为1/3和-1/2,又因

请设关于x的方程x2+(2k+1)x+k2-2=0的两实数根x1 ,x2的平方和是11 ,求:x13+2x12+4x2的

k=1,方程为x2+3x-1=0,后面式子最后可化为2x12+6x1-15=2(x12+3x-1)-13前面就是0,所以答案就是-13,对吗?

若关于X的方程X2-2kx+k2+3k-1=0的两根为x1和x2.且x12+x22=-a,a=-1求实数k的取值

你的题是不是有问题啊!k的值可以确切求出来,怎么还要求取值的?解法:因为x^2-2kx+k^2+3k-1=0,所以就由,△=b^2-4ac求出4k^2-4k^2-12k+4>=0,k=有韦达定理可以得

已知x1、x2为方程x2^+3x+1=0的两实根,则x12^+8x2+20=__________.

x1=(-3+√5)/2或(-3-√5)/2x2=(-3-√5)/2或(-3+√5)/2x1²=(7-√5)/2或(7+√5)/28x2=-12-4√5或-12+4√5所以x12^+8x2+

已知关于x的方程x2-px+q=0的两根分别是x1、x2,且x12+x22=7,1x

∵关于x的方程x2-px+q=0的两根分别是x1、x2,∴x1+x2=p,x1•x2=q,∴x12+x22=(x1+x2)2-2x1•x2=p2-2q=7,即p2-2q=7,①1x1+1x2=x1+x

设x1,x2是关于x的方程x2-2kx+1-k2=0(k是实数)的两个实根,求x12+x22的最小值.

x1+x2=2k,x1*x2=1-k^2有两个实根4k^2-4(1-k^2)>=08k^2-4>=0k^2>=1/2x1^2+x2^2=(x1+x2)^2-2x1x2=4k^2-2(1-k^2)=6k