cd是△ABC的中线,点E是AF的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:13:17
CD把△ABC分成两个三角形,且这两个三角形的周长之差为2,可以得出AC=BC+2或BC=AC+2;D是AB中点,且DE⊥AB,可以得出△ABE是等腰三角形BE=AE;△BCE的周长为8即AC+BC=
解由E是AC的中点,F是AD的中点即FE//CD所以SΔAEF/SΔADC=(AE/AC)²=(1/2)²=1/4则SΔADC=4SΔAEF=4又有CD是ΔABC的中线即SΔABC
(1)①如图:∵AB=AC,∴AD是BC的高,也是BC的中线,即D与E重合,∴λA=DEBE=0;②当△ABC中,λA=0时,即DE=0,∴AD是BC的高,也是BC的中线,即AD是线段BC的垂直平分线
过A做CD垂线交其延长线于H相似知AH=3ED=BF,所以CF=根号3倍EFEF=1/2,所以DH=根号3,所以DF=根号3除以2
证明:因为CD是直角三角形斜边上的中线所以CD=AB/2所以CD=AD所以∠ACD=∠BAC=30度因为AE∥CD所以∠EAC=∠ACD=30度所以∠BAE=60度因为RT△ABC中,∠ACB=90°
证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵C
∠ACD+∠BCD=∠ACB=903∠BCD+∠BCD=90∠BCD=22.5∠ACD=67.5∠A+∠B=90∠A+∠ACD=90∠B=∠ACD=67.5CE为AB中线CE=BE∠ECB=∠B=67
∵∠ACB=90°,CD是中线,∴AD=BD=CD=6,∵DF⊥AB,∴∠F+∠B=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠F=∠A,又∠FDB=∠ADE=90°,∴ΔADE∽ΔFDB,
取CF中点G,连接D,G则DG是△BCF中位线,所以DG‖BF,即DG‖EF又因为E是AD中点,所以EF是△ADG中位线所以F是AG中点所以AF=FG又因为G是CF中点所以AF=FC/2
1、∵AD是BC边上的中线,点E是AD的中点∴BD=CD,AE=DE∵AF∥BC∴∠F=∠EBD,∠FAE=∠BDE∴△AFE≌△DBE(AAS)∴AF=BD=CD即CD=AF2、∵AF=CD,AF∥
过D做平行线DG‖BF交AC于G.三角形BFC中,因为D是BC中点,故G也为FC中点.三角形ADG中,因为E为AD中点,故F也为AG中点.所以AF=FG=GC,即AF=1/2 CF
在直角△EDC中,∠CDE=90°-∠E,又∵CD=CM,∴∠DMC=90°-∠E,M点是直角△ABC斜边中点,∴MA=MC,∴∠MCD=∠A,在△CDM中,由△内角和定理得:2﹙90-∠E﹚+∠A=
因为△ABC是等边三角形,所以BD既是中线,有是角平分线,所以∠DBC=30°.而∠ACB=60°,CE=CD,故△DCE是等腰三角形.所以∠DCE=30°,即∠DBC=∠DEC,所以△DBE是等腰三
作DF⊥BE,垂足为F因为三角形ABC为等边三角形所以∠ABC=∠BCD=60°因为CD=CE所以∠E=∠CDE而∠BCD=∠E+∠CDE=60°所以∠E=∠BCD/2=30°因为BD是AC边的中线,
2、证明:∵△ABC是等边三角形∴∠ACB=60°又∵CD=CE∴∠E=∠CDE=30°∵BD为中线,∴BD平分∠ABC(三线合一)∴∠DBC=30°=∠E∴DB=DE,又∵F为BE边中点,∴DF⊥B
∵△ABC是等边三角形∴∠ABC=∠ACB=60°又∵BD是中线∴BD平分∠ABC∴∠DBC=∠ABC=30°∵CE=CD∴∠E=∠CDE又∵∠ACB=∠E+∠CDE∴∠E=∠CDE=30°∴∠DBC
∵△ABC为等边三角形∴∠BCA=60°又∵CD=CE∴∠CED=∠CDE∵∠CED+∠CDE=∠BCA=60°∴∠CED=30°又∵CD=AD,BC=BA∴BD平分∠CBA又∵∠CBA=60°∴∠C
OC=OD.理由:过D作DF∥BE交AC于F,∵D为AB的中点,∴AF:EF=AD:BD=1,∵AE=2CE,设CE=X,则AE=2X,AC=3X,则AF=1/2AE=X,∴EF=AE-EF=X,∴O
证明搞起:在AE中取中点F做辅助线,连接DF好了,AD=DB;AF=FE所以DF是中位线DF平行于BE然后FE=EC、O点为中点(DF平行于BE平行嘛)搞定
证明:∵⊿ABC是等边三角形∴∠ABC=∠ACB=60º∵BD是AC的中线∴BD平分∠ABC【等腰三角形三线合一】∴∠DBC=30º∵CE=CD∴∠E=∠CDE∵∠ACB=∠E+∠