数列{an}中,3anan-1 an-an-1=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:46:09
数列an中,a1=3,a=2an-1,∴a-1=2(an-1),∴an-1=(a1-1)*2^(n-1)=2^n,∴an=2^n+1,∴bn=2n/{(2^n+1)(2^(n+1)+1]},∴Sn=2
在原式基础上,再写一相同结构等式,到an+2结束.减去原式便得到:1/(an+1)an=n+1/(an+1)(an+2)-n/anan+1整理得…你题目可能出错了,不是等差数列.我们假设公差为d.那么
如果an不等于0有a(n+1)/an=2-a(n-1)a1=1,有a3=a2=1由数学归纳法可知an=1是常数列再问:不好意思是an+1+a(n+1)an-2an=0a1=1求通项再答:。。。。这个简
a(n+1)=2an-1a(n+1)-1=2(an-1)[a(n+1)-1]/(an-1)=2,为定值.a1-1=3-1=2数列{an}是以2为首项,2为公比的等比数列.an=2×2^(n-1)=2^
设A1A2=a则:由于在数列{An}中An小于0故a>0,且An+1An+2/AnAn+1>0即q>0;由题中:2AnAn+1+An+1An+2>An+2An+3得2aq^(n-1)+aq^n>aq^
1/a(n+1)=an+2/2an=1/2+1/an所以,{1/an}是公差为1/2的等差数列1/an=1/a1+(n-1)*1/2=(n+1)/2an=2/(n+1)a(n+1)=2/(n+3)an
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
a(1)=s(1)=2,a(n+1)=s(n+1)-s(n)=(n+1)^2-n^2=2n+1=2(n+1)-1.a(1)=2,n>=2时,a(n)=2n-1.b(1)=1/[a(1)a(2)]=1/
我理解的你的题目,是要求第N项与第N+1项之积等于2下面这个数列显然符合你的题目要求:1,2,1,2,1,2,1……其通项公式为an=(3+(-1)^n)/2
AnAn-1=An-1-AnAnAn-1+An=An-1An=An-1/(A(n-1)+1)n>=2A1=1/3A2=A1/(A1+1)=1/3/(1/3+1)=1/4A3=A2/(A2+1)=A1/
要求什么?是Bn吗?A1×A2=2×3=6AnA(n+1)=6×3^(n-1)=2×3^n由此推出A(n-1)An=2×3^(n-1)两式相除A(n+1)/A(n-1)=3数列{An}奇数项、偶数项分
(an*an+1)/(an-1*an)=3=>an+1/an-1=3=>a2n=3^n,a2n-1=2*3^(n-1)=>bn=5*3^(n-1)
1.由题意可知a1a2=1*2=2ana(n+1)=2*q^(n-1)ana(n+1)+a(n+1)a(n+2)>a(n+2)a(n+3)即2*q^(n-1)+2*q^n>2*q^(n+1)两边同时乘
∵数列{an}中,a[n]a[n-1]+1=2a[n-1](n≥2)∴a[n]=2-1/a[n-1]采用不动点法,令:x=2-1/x,即:(x-1)^2=0,解得:x=1∴a[n]-1=2-1/a[n
递推式有问题因为移项3ana=-a两边同时除以a所以3an=-1==>an=-1/3所以1/an=-3显然{1/an}不是等差数列递推式应该是3ana+a-an=0(n≥2)吧移项a-an=-3ana
由(an-1-an)/(anan-1)=(an-an+1)/(anan+1)(n≥2),得到1/an-1/a(n-1)=1/a(n+1)-1/an{1/an}是等差数列,而且公差d=1/a2-1/a1
麻烦你把你的问题写清楚了,那些an-1到底都是第N-1项还是第N项再-1.如果是第N-1项你可以这样写a(n-1).再问:an*a(n-1)+1=2*a(n-1)bn=1/a(n-1)
由题意:n=1时,a2*a1=a2*1=2,即a2=2n=2时,a2*a3=4,即a3=2当n>=2时,anan+1=2^nan-1an=2^(n-1)故an+1/an-1=2所以隔项成等比数列当n为
(1)∵anan+1=2n,∴anan-1=2n-1,两式相比:an+1an−1=2,∴数列{an}的奇数项成等比数列,偶数项成等比数列,∵a1=1,a nan+1=2n(n∈N*)∴a1=
把3anan-1+an-an-1=0两边同时除以anan-1,变为1/an-1/an-1=3,{1/an}为等差数列,求出an=1/(3n-2)“{bn}满足bn=1、an”这句话之后看不懂你的意思.