A的伴随矩阵等于AT求证A可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:16:38
A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A
A的为1阶方阵时A不可逆A=0,所以A*=0,所以不可逆A的阶数n大于等于2时(A*)*=|A|^(n-2)A(证明见参考资料例6)因为A不可逆所以|A|=0所以(A*)*=O所以A*(A*)*=|A
A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=
因为A可逆,所以|A|!=0由AA*=|A|E,两边取行列式,得|A||A*|=|A|^n由|A|!=0,得|A*|=|A|^(n-1)!=0.所以A*可逆.再由AA*=|A|E,知A*=|A|A逆所
由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等
由A*A=|A|E,A*=A'得A'A=|A|E.再由A不等于0,设aij≠0.则比较A'A=|A|E第j行第j列元素有a1j^2+a2j^2+...+aij^2+...+anj^2=|A|而A是实方
【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义
核心:线性!第一章知识链线性代数核心就这么一点内容(考研的主要部分,不是全部喔!)线性方程组--->行列式--->矩阵--->向量--->向量
AA*=det(A)E则det(A)det(A*)=(det(A))^n故det(A*)=(det(A))^(n-1)
1,2可由定理若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;其他情况r(A*)=0获证3可由AA*=(detA)E导出,将A按可逆不可逆分类讨论下即可
由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')
条件应该有A≠0吧.n=2时,设A=abcd则伴随矩阵A*=d-b-ca由转置A‘=A*得a=d,b=-c.当讨论限制为实矩阵,行列式|A|=a²+b²>0,A可逆.复矩阵时有反例
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
因为A(A^(-1)+B^(-1))B=[E+AB^(-1)]B=B+A即(A^(-1)+B^(-1))=A^(-1)(B+A)B^(-1)因为A可逆,B可逆,A+B可逆所以得证.
A*=|A|A^-1|A*|=||A|A^-1|=|A|^n乘以|A^-1|=|A|^(n-1)因为A可逆,所以A的行列式不等于零所以|A|^(n-1)不等于0所以|A*|不等于0所以伴随矩阵可逆
n阶方阵A可逆,|A|≠0AA*=|A|EA*=|A|A^(-1)|A*|=|A|^(n-1)≠0A*可逆
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-
令P是对换ij行的排列阵那么B=PA由此得到adj(B)=adj(A)adj(P)把adj(P)算出来就行了事实上P=P^{-1},所以adj(P)=det(P)P^{-1}=-P也就是说adj(B)
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.