a是以bc为直径的圆0上一点,be平分角abc于e,ef平行ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:55:33
a是以bc为直径的圆0上一点,be平分角abc于e,ef平行ac
(2014•湛江二模)如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆O的切线l,则点A到直线l的距离A

∵圆O的直径AB=6,BC=3∴∠BAC=30°,线段AC=33,又∵直线l为圆O的切线,∴∠DCA=∠B=60°∴AD=92.故答案为:92.

如图;AB为圆O的直径,C为圆O上一点,连接AC,BC,E为圆O上一点,且BC=CE,点F在BE上,CF⊥AB于D.1求

题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

已知点A B两点为(-3,0),(3,0),C为线段AB上的任意点,P,Q分别是以AC,BC为直径的两圆的外公切线切点求

这个题要数形结合画2条辅助线,图我画好了,你点击参考资料可以看到.1,如图所示,过C点作X轴垂线与PQ交与G点.因为GP,GC均与大圆相切,故PG=GC.同理,GC=GQ.又所以PG=GC=GQ.故C

已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P

证明:(1)连接AB,OA,OF;∵F是BE的中点,∴FE=BF.∵OB=OC,∴OF∥EC.∴∠C=∠POF.∴∠AOF=∠CAO.∵∠C=∠CAO,∴∠POF=∠AOF.∵BO=AO,OF=OF,

已知 如图 圆O的直径AB与弦CD互相垂直 分别过A B两点做弦CE的垂线(E为劣弧BC上一点) 垂足分别为F G 求证

证明:设AF交圆O于M,连接BM.AB为直径,则∠AMB=90°,∠BMF=90°.又∠AFG=∠BGF=90°,则四边形MFGB为矩形,MB=FG.设AB与DC交于N,∠ANC=∠AFC=90°,得

如图,D是以AB为直径的圆O的直径AB延长线上一点,DC切圆O于C,角ADC的平分线PM交AC于M,交BC于N,求证三角

∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN

如图,C是以AB为直径的半圆上的一点,D是弧BC的中点,过点D作直线AC的垂线EF,垂足为E,且交AB的延长线于F

⑴连结OD交BC于G∵D是弧BC的中点∴OD⊥BC∴∠CGD=90°∵AB是直径∴∠ADB=90°=∠E∴∠EDG=360°-∠E-∠ECG-∠CGD=90°∴OD⊥EF∴EF是半圆的切线⑵设⊙O的半

已知AB是圆0的直径,点C是圆0上除A,B两点外的任意一点,用向量法求证AC垂直BC

在平面直角坐标系中:设圆O在原点O(0,0),半径为1,A(-1,0),B(1,0),C(x,y),且x²+y²=1.AC=(-1-x,0-y)BC=(1-x,0-y)AC·●BC

如图,A是以BC为直径的⊙O上一点,AD垂直于BC于点D,过点B做⊙O的切线,与CA的延长线相交于点E,G是AD的中点,

1.连结AB,PA是⊙○的切线,BE⊥BC,又AD⊥BC,∴AD//EB,∴EF/AG=CF/CG=BF/DG,∵AG=DG,∴EF=EB,2.∵BC是直径,∴∠EAB=∠BAC=90°,∴AF=EF

如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,则点A到直线l的距离AD为(  )

∵圆O的直径AB=6,BC=3∴∠BAC=30°,线段AC=33又∵直线l为圆O的切线,∴∠DCA=∠B=60°∴AD=92故选D

速求!如图所示,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=1/3DB,点 C为圆O上一点,且BC=√3A

第一题:∵AB是直径,C是圆上一点,那么∠ACB是直角.又∵BC=√3AC∴∠ABC=30∴∠BAC=60AC=1/2AB=2又∵AD=1/4=1∴∠ACD=30因此可以推出∠ADC=180-∠BAC

BD为圆O的直径,E为圆O上一点,直线AE交BD的延长线于A,BC垂直AE于点C,且角CBE=角DBE.

证明:连接OE,因为,BO、OE为圆上的点,BO=OE,所以,角DBE=角BEO;所以,角DBE=角CBE=角BEO;所以,BC//OE;因为,BC垂直于AE(AC),所以,角BCA=90度;因为,B

(2014•宜昌三模)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=

(Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,又EF⊂平面EFA,BC不包含于平面EFA,∴BC∥面EFA,又BC⊂面ABC,面EFA∩面ABC=l,∴BC∥l,又BC⊥AC,面PAC∩面

如图,    BC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂

联结ABBC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂直BC于点D交BG于点E,AC与BG交于点F∴∠DAC=RT∠-∠ACB∠AFB=RT∠-∠ABC=RT∠-∠ACB∴∠DAC

如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中

证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴BFDG=CFCG,EFAG=CFCG,得BFDG=EFAG

如图,BC是圆O的直径,P是圆O上的一点,AP是弧BP的中点,AD⊥BC,垂足为D,

相等,作图后可得到三角形AoB等于三角形BoA,所以BF等干AD,oD等于oF.因为oB等于oA、所以BD等于AF.因为三角形BDE等于三角形.所以BD等于ED等于EF等于AF.因此AE等于BE