A是n阶非零矩阵,A*是其伴随矩阵,且满足aij=Aij,证明A可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:33:49
A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A
n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A
||A|A*|=|A|^n|A*|=|A|^n|A|^(n-1)=|A|^(2n-1)用到了几个结论:1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
AA*=|A|E,则|A|×|A*|=|A|^n1.若R(A)=n,则|A|≠0,所以|A*|≠0,所以R(A*)=n2.R(A)<n-1,则A的所有n-1阶子式都等于0,所以A*=0,所以R(A*)
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
3的n次方乘以2的n-1次方.
知识点:(A*)^T=(A^T)*因为A是正交的,所以A^TA=E(或AA^T=E)所以(A^TA)*=E*所以A*(A^T)*=E所以A*(A*)^T=E所以A*是正交矩阵.
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
(1)要证这条,需要知道等式AA*=|A|E,其中|A|是A的行列式.如果R(A)=n,说明|A|不为零,则A*可逆,其逆为(1/|A|)A,所以R(A*)=n.(2)要证这条,需要知道A*的元素是A
反证.若|A*|≠0则A*可逆再由AA*=|A|E=0得A=AA*(A*)^-1=0所以A*=0,这与|A*|≠0矛盾.故|A*|=0.
嗯 记住这个结论:
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
detA=1ordetA=1A*A=EorA*A=-EA*=A^TorA*=-A^TA*^T=AorA*^T=-A,A*^TA*=A*A*^T=E所以:A*是正交矩阵.再问:看不懂。。它中间那个or要
有三种情况,主要利用Aadj(A)=adj(A)A=det(A)I1.r(A)=n,那么A非奇异,此时adj(A)=det(A)A^{-1}也非奇异,所以r(adj(A))=n2.r(A)=n-1,此
设A是n阶方阵,则当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)所以设A是n阶方阵,则当r(A)=n时,r(A*)=n,则r(A*)*=n当r(A)=n-1时,r(A*
知识点:|A*|=|A|^(n-1),其中n是A的阶.所以|A*|=|A|^(3-1)=2^2=4再答:记住公式就好了再答:亲,你的问题我已经回答完毕,如有不明白,请继续追问,满意的话请点一下右上角【
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值