作业帮 > 数学 > 作业

已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:32:16
已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.
已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.
detA=1 or detA=1
A*A=E or A*A=-E
A*=A^T or A*=-A^T
A*^T=A or A*^T=-A,
A*^TA*=A*A*^T=E
所以:A*是正交矩阵.
再问: 看不懂。。它中间那个or要怎么看?
再答: 第一个少了点东西:detA=1 or detA=-1
再问: 正交的detA等于正负1吗?
再答: 是的:A^TA=E,det(A^T)det(A)=[det(A)]^2=1,det(A)=正负1
再问: QAQ还是不明白,最后那一步A*^TA*=A*A*^T=E是怎么得出来的?
再答: 对于正交矩阵A来说:A逆=A的转置:A*A=E,A*AA^-1=A^-1=A^T,A*=A^T,A*^T=A