a为一矩阵,a^2=a,则a=e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:24:59
这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?
可以直接验证A*A=|A|E(E为单位矩阵)A*=|A|A^(-1).∴|A*|=|A|^(n-1).(A*)^(-1)=(1/|A|)A(A*)*=}A*|(A*)^(-1)=|A|^(n-1)(1
题目有误,应为求|-2A*||-2A*|=(-2)^3|A*||=-8|3A^(-1)|=-8*3^3/3=-72.而|-2A|=(-2)^3|A|=-8*3=-24.
AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
A^-1=1/|A|xA*=1/2A*所以1/2=|A^-1|=|1/2A*|=1/8|A*|,|A*|=4|3A^-1+2A*|=|3*1/2A*+2A*|=|7/2A*|=(7/2)^3*4=34
1.|(3A^-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|-A(-1)|=(-1)^4*1/|A|=1/22.D=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0
A*=|A|A^-1=-2A^-1(-1/3A)^-1=-3A^-1所以|(-1/3)^-1+A*|=|-3A^-1-2A^-1|=|-5A^-1|=(-5)^3|A|^-1=-125/(-2)=12
因为A*=|A|A^-1=-2A^-1所以|4A^-1+A*|=|4A^-1-2A^-1|=|2A^-1|=2^3|A|^-1=-4.
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4
|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).
A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|
AA*=|A|E,∴A*=2A^-1由于A为3阶矩阵,∴|-2A*|=|-4A^-1|=(-4)^3×1/2=-32.再问:那请问这样|-2A*|=(-2)^3|A*|=(-2)∧3|2A^-1|=(
|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
可用行列式性质如图计算,答案是16.经济数学团队帮你解答,请及时采纳.谢谢!
|2A逆-A*|=|2A*/|A|-A*|=|(2E/|A|-E)A*|=|2E/|A|-E||A*|=|-1/3E||A|^(n-1)=(-1/3)^n*3^(n-1)=(-1)^n/3
|-3A|=(-3)^3|A|=-27*2=-54