A为n*n阶矩阵,且A^2-A-2E=0,求(A 2E)的逆阵的行列式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:57:23
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
用性质,答案是-n.
1.A^2-2A-E=A^2-2A-15E+14E=(A+3E)(A-5E)+14E=0所以:(A+3E)*[(A-5E)/(-14)]=EA+3E)^-1=(A-5E)/(-14),即(5E-A)/
可以|A||1/3A^-1-2A*|=|1/3AA^-1-2AA*|=|1/3E-2|A|E|=|1/3E-4E|=(1/3-4)^n原题是什么?3阶的?(3A)^-1最后结果再除|A|即可再问:对不
证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所以(A+I)(A-2I)=-2I所以A+I可逆,且(A+I)^-1=(-1/2)(A-2I).(2)是要证r(A)+r(I-A)=n吧
很显然,因为极小多项式没有重根.再问:能不能给点过程,根就只有2,-1~n阶还有其他根呢,为0,不算重根?再答:不管n多大,A的特征值只能是2或-1,没有别的根。A的极小多项式是x^2-x-2的因子,
因为A*=|A|A^-1=2A^-1所以|3A^-1-2A*|=|3A^-1-4A^-1|=|-A^-1|=(-1)^n|A|^-1=[(-1)^n]/2
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
由题意A^2-3A+2E=0即A^2-3A=-2EA^2-3AE=-2EA(A-3E)=-2EA(A-3E)/(-2)=EA(-A+3E)/2=E所以A可逆,且其逆阵为(-A+3E)/2
A*A=AA*=|A|I从而A*=|A|A﹣¹3A﹣¹-2A*=3A﹣¹-2|A|A﹣¹=-A﹣¹|-A﹣¹|=(-1)^n|A﹣¹
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
A^2=E,|A|^2=1,|A|=1,r(A)=n
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
AA'=AA,取两边转置有A'A=A'A',即A(A'-A)=0,-A'(A'-A)=0.两式相加有-(A'-A)^2=0,则A=A'
用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异
(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2