A^2=A,A可逆能推出A=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:15:35
A^2=A,A可逆能推出A=E
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;

因为A^2=E所以(A-E)(A+E)=0题目是不是有问题

设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.

A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线性代数的两道证明题1.A的伴随矩阵可逆怎么推出A可逆?2.A'A=0怎么推出A=0?

2.A'是A的转置,对吧.这样A‘A的对角线是列平方和.所以如果乘积为0,则A=01.如果A*为A的伴随矩阵,A*A=|A|I,A=|A|(A*)^(-1)

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

已知A是方阵,A^2+2A+E=0,证明A+E可逆

因为A^2+2A+E=0所以(A+E)^2=0所以|A+E|=0所以A+E不可逆题目有误

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

A^2+A-4E=OA^2+A=4EA(A+E)=4EA(A+E)/4=E因此,A可逆,且A^-1=(A+E)/4A^2+A-4E=OA^2+A-2E=2E(A-E)(A+2E)=2E(A-E)(A+

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

已知方阵A满足A*A-A-2E=0,判断A,E-A是否可逆?如果可逆,求它们的逆矩阵.证明题

A*A-A-2E=0于是A*(A-E)=2EA*(A-E)/2=E(E-A)*(-A)/2=E则A,E-A都可逆,且A的逆矩阵是(A-E)/2,E-A的逆矩阵是-A/2

A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵

因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆

A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

线性代数题,(A-E)的平方=0,能推出A=E吗?

不能,例如A=1101(A-E)=0100(A-E)(A-E)=0