ADC内接与 O,AB是 O的直径求证AE是 O的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:40:32
连结AO并延长,交圆于A,E,连结AC,EC,则∠ACE=90°,∴∠EAC+∠AEC=90°,∵∠CAD=∠ABC,∴∠CAD+∠EAC=90°,∴直线AD与⊙O相切.
1.∠ADC&∠ABC同弦,因此∠ABC=∠ADC=68°AB为圆O的直径,因此∠ACB=90°因此∠BAC=90°-68°=22°后面两小题没有图,不知道△FCE是移到怎样再问:再答:1)Rt△AB
(1)证明:连接OC、OD,∵∠ADC=45°,∴弧AC的度数是90°,∵AB为直径,∴弧BC的度数也是90°,∴弧AC=弧BC,∵OC为半径,∴OC⊥AB,∴∠COE=90°,∴∠C+∠OEC=90
三角形ACB内接于圆O,易得角C=90°因为角C=90°所以角2+角3=90°因为角2=角CAD所以角3+角CAD=90°那么AD垂直于AB及AD为园O的切线再问:是第二题!!!!!!!再答:不好意思
因为DO=AO(半径相等),所以角ADO=角DAO\x0d因为角ADC=角B而角B+角DAB=90\x0d所以角ADC+角DAB=90,又因为角ADO=角DAO\x0d所以角CDA+角ADO=90,即
(1)证明:∵AB是⊙O的直径,CD⊥AB,∴AC=AD,∴AC=AD,∴∠ACE=∠AFC;(2)连接OC,设圆的半径为r,∵CD=BE=8,∴CE=4,OE=8-r,∴在直角三角形OCE中,r2-
易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
因为BD平分∠ADC所以角ADB=角BDC可得AB=BC又因AC为直径B在圆上所以角ABC=90度三角形ABC为直角三角形因圆O的直径为20AB=BC由勾股定理可得AB等于BC=根号10因AC为直径D
证明:(1)、连接OC∵CE是圆O切线∴OC⊥CE∵AE⊥CE∴OC‖AE∴∠OCA=∠EAC∵OA=OB∴∠OCA=∠OAC∴∠EAC=∠OAC即AC平分角BAE(2)、∵∠EAC=∠OAC∴弧CD
∠EDC=∠ABC(圆内接四边形外角等于内对角);∠DEC=∠ACB=90度所以△DEC∽△BCADE/EC=BC/CA=3/4
应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的