AB是圆O的直径,弦PQ交OA于M且PM=OM,求证弧AP=1 3弧BQ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:56:11
连结OP、OQ∵PM=OM∴∠P=∠AOP∴∠OMQ=∠P+∠AOP=2∠AOP∴∠BOQ=∠Q+∠OMQ=∠Q+2∠AOP∵OP=OQ∴∠Q=∠P=∠AOP∴∠BOQ=3∠AOP∴3弧AP=弧BQ
连接BD,则三角形ABD是直角三角形,BD²=AB²-AD²;则BD²=80-64=16,则BD=4;因OC垂直AD,则F是AD中点,即AF=4;因角BED=D
无论点M在圆内还是在圆外,都有:AB=CD. 证明如下:一、图1时, ∵∠AMP=∠CMP,∴∠BMQ=∠DMQ,∴MQ是∠BMD的平分线. ∵PQ是⊙O的直径,∴O在MQ上,∴点O到BM、DM
证明:连接OB、OD∵OA为圆C的直径∴∠ADO=90°即OD⊥AD∵OB=OA∴AD=BD(三线合一)点D是AB的中点.
连OQ,OP.OQ=OP所以角OPQ=角OQPOM=PM所以角POM=角MPO因为角BOQ=角OQP+角OMP角OMP=角PMA=角POM+角MPO所以角BOQ=3角POM所以角POM所对弧PA=1/
(2)设BC交OM于E,∵BD=4,OA=OB=1/2BD=2,∴PA=3,∴PO=5;∵BC‖MP,OM⊥MP,∴OM⊥BC,∴BE=1/2BC;∵∠BOM+∠MOP=90°,在直角三角形OMP中,
、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角形
1.【求证ad=dc】连接do,证rt△ado≌rt△cdo2.【求证de是圆o1的切线】∵ao1=do1∴∠dao1=∠ado1∵ao=co∴∠cao==∠aco∴∠ado1=∠aco∴do1//c
连接O1B,∠Bo1A=2∠COA弧AB所对的圆心角是弧AC的两倍,但是所在圆的的半径是弧AC所在圆的半径的一半,因此它们长相等
证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点
【我想,此题应该不只一问吧,第二问是不是求矩形PQRS的面积呢?】【图在上传中请稍等】1)∵CD是⊙O切线,切点为D∴OD⊥CD(圆的切线垂直于过切点的半径)∴Rt△COD中,∠CDO=90°∴CO&
证明:连接OB因为OB=OA所以∠OAB=∠OBA因为BC=CD所以∠CDB=∠DCB因为∠ADO=∠CDB所以∠ADO=∠DCB因为∠ADO+∠OAB=90所以∠DCB+OBA=90所以∠OBC=9
角ADO是直径OA所对的圆周角,所以是90°,即直线OD垂直于AB;连接OB,OB=OA,等腰三角形ABO中,OD是底边垂线,根据三线合一,OD也是中线,AD=BD;因为AD=BD,OD=OD,角AD
1、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角
1、∵OA=OC=4 AE=2∴OE=OA-AE=2 AB=2OA=8∵CD⊥AB , AB是圆O的
证明:延长PS交圆O于T,连接QT∵PQ⊥AB,AB是圆O的直径∴AB垂直平分PQ【垂弦定理】∴SP=SQ∴∠TPQ=∠RQP∴弧QT=弧PR【相等圆周角所对的弧相等】∵弧BP=弧BQ【直径平分垂直的
延长PO交圆于点C,由PM=MO得∠P=∠POM,由OP=OQ得∠P=∠Q∠BOC=∠POM=∠P∠QOC=∠P+∠Q=2∠P故∠BOQ=3∠P=3∠POA故3弧AP=弧BQ
5条弧AC,AD,CB,BD,DAC
1,∵PM是切线∴∠PMO=90°=∠PMN+∠DMO∵AO⊥BO∴∠ODM+∠OND=90°∵OM=OD∴∠OMD=∠ODM∵∠PNM=∠OND∴∠PMD=∠PNM∴PM=PN2,在直角三角形OPM