AB是圆O的直径,OD垂直BC于点F,且交圆O于点E,若角AEC=JIAO

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:10:32
AB是圆O的直径,OD垂直BC于点F,且交圆O于点E,若角AEC=JIAO
AB是圆O的直径,BC是弦,OD垂直BC于E,交圆于D,连接OC.若BC=8,ED=2,求圆O的半径 .

设圆的半径是x,那么OE=OD-ED=x-2;OC=x;CE=BC/2=4三角形OEC是直角三角形,由勾股定理(x-2)2+42=x2可以解出x=5所以圆O的半径是5.

已知,如图,AB是圆O的直径,C是圆O上一点,OD垂直BC于点D,过点C作圆O的切线,交OD的延长线于点E,连接BE

  (1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=

如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,AB是圆O的直径,BC是圆O的弦,OD垂直于BC于点E,交弧BC于点D.(1)请写出三个不同类型的正确结论;

(1)E为BC中点,D为弧BC中点,角DOB+角CBO=90°(2)连接AC角ACB=90°β+CAB=90°(1)CAB为弧CB所对圆周角,α为弧CAB所对圆周角α+CAB=180°(2)(2)-(

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图所示,AB是圆O的直径,BC是弦,OD垂直BC于E,交弧BC于D.请写出四个不同类型的正确结论(2)连接CD,设角C

(1)如图:①BE=CE,②弧CD=弧BD,③AC∥OD,④∠A=∠DOB, (2)∵OD⊥BC,∴弧BC=2弧CD∵弧AC+弧BC=180°,∴弧AC+2弧CD=180°,∴2∠ABC+4

AB是圆O的直径,OD垂直于弦BC于点F,且交圆O于点E,bd与圆o相切.若∠AEC=∠ODB.当ab=10,bc=8时

连结AC,则AC=6由已知得弧CE=弧BE∴∠CAG=∠BAGAC/AB=CG/BG6/10=(8-BG)/BG∴BG=5OF=AC/2=3∴BF=4∴GF=1

AB是圆O的直径,BC是弦,OD垂直BC于E,交BC弧于D.连接CD.设角CDB等于α.角ABC等于β.试找出α与β之间

连接OC,显然OC=OB=OE∵OC=OB,OD⊥BC∴CE=BE(等腰三角形底边的垂线、中线、角平分线重合)∴CD=BD,DE是角CDB的平分线(理由同上)∴∠ODB=∠CDB/2=α/2∵OD=O

如图,AB是圆O直径,BC是弦,OD垂直BC于E 交弧BC于点D 1.请写出四个不同类型的正确结

(1)E为BC中点,D为弧BC中点,角DOB+角CBO=90°(2)连接AC角ACB=90°β+CAB=90°(1)CAB为弧CB所对圆周角,α为弧CAB所对圆周角α+CAB=180°(2)(2)-(

ab是⊙o的直径,od垂直ab,db交⊙o于点c,求2·(bo的平方)=bc·bd

证明:连接AC因为AB是直径,所以∠C=90°因为DO⊥AB所以∠BOD=90°所以∠C=∠BOD又因为∠B=∠B所以△BOD∽△BCA所以OB/BC=BD/AB所以OB*AB=BC*BD因为AB=2

如图所示,已知AB是圆O的直径,点C在圆O上,且AB=12,BC=6..(1)如果OD垂直AC,垂足为D,求AD的长

1、∵直径AB∴∠ACB=90∵AB=12,BC=6∴AC=√(AB²-BC²)=√(144-36)=6√3∵OD⊥AC∴AD=AC/2=3√32、∵半圆面积S=π×(AB/2)&

如图,AB是⊙O的直径,BC是弦,OD垂直BC于E,交BC弧于D

很简单(1)四个结论:1、AC平行OD2、角ACD=90度3、BD=DC4、角AOC等于两倍的角ABC(2)因为AC平行OD且O为AB中点,所以D为BC中点(中位线),所以BD=CD=4,设半径长为x

Ab是圆O的直径,Bc是弦,角ABC=30度,过圆心O作OD垂直BC,交弧BC于点D,连接DC.判定四边形ACDO的形状

ACDO是菱形,证明如下:∵AB是圆O的直径,BC是弦∴∠ACB=90°又:∠ABC=30∴AC=1/2AB=AO=OC∴△AOC为等边三角形∴∠AOC=60°又:OD⊥BC∴OD∥AC∴∠BOD=∠

如图,AB为圆O的直径,CD与圆O相切于点C,且OD垂直BC,垂直为F,OD交圆O于点E,求证1.角D等于角AEC&nb

因为DC切圆于C,则OC垂直DC,所以角D+角3=90度而OD垂直BC,所以角1+角3=90度,所以角1=角D半径OC=OB,所以角1=角B,所以角D=角B同弧AC所对圆周角 角2=角B所以

AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB

关系为:α-β=90°证明:∵AB是直径∴∠ACB=90°∴∠A+∠ABC=90°∵ABDC内接于圆∴∠A+∠BDC=180°∴90°-β+α=180°∴α-β=90°

已知,AB是圆O的直径,AC为弦,OD平行BC,交AC于点D,OD等于5cm,求BC的长.证不出来垂直啊

连接oc再答:因为AB=2OC,所以三角形ABC为直角三角形再问:不能逆用这个定理吧再答:题作多了就可以了再答:以后老师会告诉你的再问:。。。。

几道关于圆的数学题1.已知AB是圆O的直径,AC是弦,过O作OD垂直AC于点D,连接BC~(1)求证:OD=BC的一半.

1.1)因为OD垂直AC所以AD=DC因为AO=OB所以OD是三角形ABC的中位线所以OD=1/2BC2)因为AB是圆O的直径所以角ACB=90度因为角A=40度所以角ABC=90-40=50度2.连

AB是圆O的直径,BC是弦,OD垂直BC于E交弧BC于D

BC⊥AC,AC∥OD,CE=BE,弧CD=弧BD,角A=角BOD

AB是圆O的直径,BC是圆O的弦,OD垂直CB于点C交弧BC于点D,连接CD,找出角CDB与角ABC之间的一种关系并证明

答:角CDB与角ABC之间的关系是:∠CDB=∠ABC+90,因为∠ABC=∠ABC(同弧上的圆周角相等)∠ADB=90度于是:∠CDB=∠ABC+90,