AB是圆O的直径,D是弧BC的中点,AC,BD的延长线相交于点E,P为BD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:09:20
AB是圆O的直径,D是弧BC的中点,AC,BD的延长线相交于点E,P为BD
如图所示,AD是圆O的直径,BC切圆O于点D,AB,AC与圆O相交于E.F,求证AE×AB=AF×AC

夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理

如图,AB是圆O的直径,BC是圆O的切线,D是圆O上一点,且AD平行于OC.

∵BC是圆O的切线∴角ABC=90°在△OCB和△OBP中得∠C=∠DBA∵AB是圆O的直径∴∠ADB是直角∵AD平行于OC∴∠DAB=∠BOC∴△ADB∽△OBC∴OC/AB=OB/AD∵OB=1,

如图,AB是圆心O的直径,BC是弦,OD⊥BC于E,交BC于D

OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC

(有好评)知AC、AB、BC是圆O的弦,CE是圆O的直径,CD垂直AB于点D.(1)证:

证明:(1)连接BE,CE为直径,则∠CBE=90°.∴∠BEC+∠BCE=90°;又CD垂直AB,则∠CAD+∠ACD=90°.∵∠BEC=∠CAD.(同弧所对的圆周角相等)∴∠ACD=∠BCE.(

如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,ab是圆o的直径,d是弧bc的中点,ac,bd的延长线交于点e,求证ae=ab

证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的

已知AB是圆O的直径,BC切圆O于B,OC切圆O于D,连接AD并延长交BC于点E,

∵BC是⊙O切线→BC⊥OB,而DB⊥OB,∴DG∥AB于是在ΔAEO中,DM:AO=ED:EA;在ΔNBO中,DM:BO=ND:NO∵AO=BO,∴ED:EA=ND:NO,即ED:DA=ND:DO又

AB是圆O的直径,D是弧BC的中点,AC,BD的延长线相交于点E,求证AE=AB

如图,AB为圆o的直径,AB=10,dc切圆o与点c,AD垂直于垂足为d,AD交圆(1)延长BC交AD延长线于P∵AB是直径,AC⊥BC,AC⊥CP,∠ACP=90

如图,AB是圆o的直径,E是弧BC的中点,OE交弦BC于点D,以知BC=8,DE=2,求圆o的半径的长

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,CB是圆O的弦,D是弧AC的中点,过D点作直线与BC垂直,交BC延长线于E点,且BA交延长线于F

1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于

ab是圆o的直径 c d是圆o的弦,且ab垂直cd,垂足为e,求bc等于bd

证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

2:已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.

1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C

圆 切线 证明题如图AB是圆o的直径,圆o过BC的中点D,DE垂直AC,求证:DE是圆o的切线,

连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

AB是圆O的直径,BC是弦,OD垂直BC于E交弧BC于D

BC⊥AC,AC∥OD,CE=BE,弧CD=弧BD,角A=角BOD

AB是圆O的直径,PD切圆O于C,BD垂直PD,垂足为D,连接BC.求证BC的平方等于AB乘以BD

总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一