ab为圆o的直径∠abc=45,ac=bc,求证ac为圆o的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:10:40
(1)因为D在圆周上,所以∠ADB=90°,所以AD垂直BC于D点,且AB=AC,所以D为bc中点(2)连接圆心O与D,因为OD=AO=BO=2,且DE⊥AB,DE=1,所以BD=2,DE根号3再问:
证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接
1.∠ADC&∠ABC同弦,因此∠ABC=∠ADC=68°AB为圆O的直径,因此∠ACB=90°因此∠BAC=90°-68°=22°后面两小题没有图,不知道△FCE是移到怎样再问:再答:1)Rt△AB
求啥啊再问:判断直线PQ与圆O的位置关系。,给了,做不出就别说话哦再答:1,连接cpbc直径所以△BCP是直角三角形△ACP也是直角三角形又因为PQ是△ACP的中线所以PQ=CQ∠QCP=∠QPC又因
要看清解答过程,请点击我给你的图片
证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
证明:(1)连接AD,OD∵AB是⊙O的直径∴∠ADB=90°∴∠ADC=90°∵E是AC的中点∴DE=AE(直角三角形斜边中线等于斜边的一半)∴∠EDA=∠EAD∵OD=OA∴∠ODA=∠OAD∴∠
(1)连结OB∵∠OBC=∠OCB,∠BOC=2∠D∴∠OBC+∠BOC/2=90°∴∠OBC+∠D=90°∵∠ABC=∠D∴∠ABC+∠OBC=90°,∴OB⊥AB,AB为圆的切线.(2)∵tanD
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
1、连接OD、OC,对三角形OAC和三角形ODC,三对应边相等,所以全等,得∠ODC=∠OAC=90°,所以CD是圆O切线2、OC与AD的交点为G依题意可知CG=AD=2BDOC平行BD,DF:FG=
∵四边形ABCD内接于圆o∴∠BAD+∠BCD=180°∵AD∥BC∴∠BCD+∠ADC=180°∴∠BAD=∠ADC∴梯形ABCD是等腰梯形,AB=CD∵AB=BC∴AB=BC=CD∴∠AOB=∠B
∵AB是直径,∴∠C=90°又∵∠ABC=2∠A∴∠A=30°,∠ABC=60°又∵M为劣弧AC的中点∴∠CBM=∠ABM=30°∴AD=BD又BD=2CD∴AD=2CD你题中的AO=2CD应为AD=
(1)是∠ABP=45吧?只要P为AB弧中点,题目的条件就能成立,无法确定C点位置,所以∠ABC度数似乎无法确定.而且从第(2)问的条件上也可看出AC是不等于BC的,因此∠ABC不一定等于45度若证明
(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥
证明:连接OE,BE∵AB是⊙O的直径∴∠AEB=∠BEC=90°∵D是BC的中点∴DE=DB∴∠DBE=∠DEB∵OB=OE∴∠OBE=∠OEB∵∠OBE+∠DBE=90°∴∠OEB+∠BED=90
EF是圆O的切线证明:∵AB是圆O的直径索要交ACB=90°∴∠B+∠BAC=90°∵∠EAC=∠B∴∠EAC+∠BAC=90°∴∠EAB=90°∴EF是圆O的切线再问:在平面直角坐标系中,圆M与x轴
∵∠ABC=30°∴∠A=90°-∠ABC=60°,∠OCB=∠ABC=30°∴∠DCE=∠E=90°-∠A=30°∴∠DCE=∠OCB,∠B=∠E∵OF=(√3-1)/2∴AF=1+(√3-1)/2
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B