广义积分∫1 [x(x 1)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:32:05
广义积分∫1 [x(x 1)]dx
计算广义积分∫(1,2)dx/[x(x^2-1)^(1/2)]

令x=sect原式=∫(0,π/3)dt=π/3

广义积分∫ (正无穷,0) x/(1+x)^3 dx

广义积分∫(正无穷,0)x/(1+x)^3dx=∫(正无穷,1)(x-1)/x^{3}dx=∫(正无穷,1)(x^{-2}-x^{-3})dx=(-x^{-1}+1/2x^{-2})|(正无穷,1)=

请计算广义积分:∫a^x x^2 dx

先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/

求广义积分∫(3,+∞)1/[(x-1)^4*√(x²-2x)]dx

∫dx/[(x-1)^4*√(x^2-2x)=∫d(x-1)/[(x-1)^4*√((x-1)^2-1)](x-1)=secusinu^2=1-1/(x-1)^2=(x^2-2x)/(x-1)^2si

求广义积分∫1/x²(x+1)dx 积分区间为【1,

1/x^2(x+1)=(Ax+B)/x^2+C/(x+1)=[(Ax+B)(x+1)+Cx^2]/x^2(x+1)=[Ax^2+Ax+Bx+B+Cx^2]/x^2(x+1)=[(A+C)x^2+(A+

求广义积分 ∫(-∞—0) 2x/(x^2+1)dx,

∫(-∞—0)2x/(x^2+1)dx=∫(-∞—0)1/(x^2+1)dx^2==∫(-∞—0)1/(x^2+1)d(x^2+1)=ln(x^2+1)|(-∞—0)=-∞求高手指点对否

广义积分∫ [1/(x^2+4x+5)]dx = .

∫[1/(x²+4x+5)]dx=∫1/[(x+2)²+1]d(x+2)+∫1/[(x+2)²+1]d(x+2)=arctan(x+2)|+arctan(x+2)|=π/

广义积分 ∫ e^x/1+e^2x dx=?(下限-∞,上限∞)

∫(-∞~∞)e^x/(1+e^2x)dx=∫(-∞~∞)1/(1+e^2x)d(e^x)=lim(x-->∞)arctan(e^x)-lim(x-->-∞)arctan(e^x)=π/2-0=π/2

广义积分∫(0,+∞) 1/(x^2+2X+3)dx为

∫(0-->+∞)1/(x²+2x+3)dx=∫(0-->+∞)1/(x²+2x+1+2)dx=∫(0-->+∞)1/((x+1)²+2)dx=(1/√2)*arctan

广义积分∫[0,1]x/根号(1-x^2)dx

∫[0,1]x/根号(1-x^2)dx=∫[0,1]1/(2根号(1-x^2))dx²=∫[0,1]-d(根号(1-x^2))=-根号(1-x^2))[0,1]=0-(-1)=1

广义积分求值 I = ∫(x^2+2x+2)^(-1)dx

你把x^2+2x+2进行配方,得到(x+1)^2+1然后令tanA=x+1然后注意把广义积分的上下限进行调整,然后就可以轻松算出来了.

广义积分求值 I = ∫(x^2+2x+1)^(-1)dx

-1(x^2+2x+1)^(-1)=(1+x)^(-2)∫(x^2+2x+1)^(-1)dx=-1/(1+x)然后代入计算即可

广义积分 ∫(0-1) √ x/ √(1-x)dx

先计算不定积分∫√(x/(1-x))dx令√x=sint,√(1-x)=cost,x=(sint)^2,dx=2sintcostdt原式=∫sint/cost*2sintcostdt=2∫(sint)

求广义积分∫∞ 1/xln x dx

∫∞1/xlnxdx=∫∞1/lnxd(lnx)=ln(lnx)∣[e,+∞]=+∞

广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?

∫(0~+∞)1/(1+x^2)dx=arctanx[0-->+∞]=π/2

广义积分x/(1+x^4)dx=

如下图,望采纳

广义积分题已知广义积分∫e^(k|x|)dx=1,广义积分上限是正无穷大,下限是负无穷大,则k=___?

分成两部分,在负无穷到0上是∫e^(-kx)dx,0到正无穷上是∫e^(kx)dx两个式子一加就出来了

广义积分 ∫ln(1-x^2)dx收敛于________(积分区域为0-1)

这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2