已知等比数列an的前n项和为sn,a1=三分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:41:24
已知等比数列an的前n项和为sn,a1=三分之一
等比数列{an}的首项为1,公比为q,前n项和为S,则数列{1/an}的前n项和为

由题意可知,Sn=1-q∧n/1-q.Sn-1=1-q∧n-1/1-q.an=Sn-Sn-1=q∧n-1.所以1/an=1/q∧n-1.所以Sn=1+1/q+1/q²+1/q³+.

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列

(Ⅰ)∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,∴2(a1+a1q+a1q2)=a1+a1+a1q,解得q=-12或q=0(舍).∴q=-12.(Ⅱ)∵a1-a3=3,q=-12

等比数列an的前n项和等于2,紧接在后面的2n项和等于12,再紧接其后的3n项和为S,则S 等比数列an的前n项和%

a+aq+...+aq^(n-1)=2,aq^n+...+aq^(2n-1)+aq^(2n)+...+aq^(3n-1)=12,q^n[a+aq+...+aq^(n-1)]+q^(2n)[a+aq+.

数学已知数列an的前n项和为sn且sn等于n减5an减85,n属于n正,证明an减一是等比数列

再答:求好评,给一个好评吧。再问:谢谢你啦再答:给好评呀。再问:太棒了再答:不是这个,是按那个问题已解决。再答:谢谢。再答:知道为什么我用了X么?

已知数列an 前n项和Sn=2的n次方-1 证明 (an)为等比数列

利用当n大于等于2时an=sn-s(n-1)=2的n次方-1-(2的n-1次方-1)=2的n-1次方.然后后一项比前一项=2,所以an为等比数列

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列

S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列即s3-s1=s2-s31+q+q^2-1=1+q-(1+q+q^2)q^2+q=-q^2q=0或-1/2如果a1-

已知{an}为等比数列,Sn是它前n项和,求an ,Sn

求出首项a1和公比q代入公式就可以了当q≠1时an=a1q^(n-1)sn=a1(1-q^n)/(1-q)当q=1时an=a1sn=na1

已知等比数列an的前n项和为2,紧接着后面的2n项和为12,再紧接着后面的3n项和为S,求S的值

显然,等比数列an的公比q≠1,由已知条件可得:Sn=a1(1-q^n)/(1-q)=2;S3n=a1(1-q^3n)/(1-q)=2+12=14;S6n=a1(1-q^6n)/(1-q)=2+12+

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*,证明{an-1}为等比数列

Sn=n-5an-85则an=Sn-S(n-1)=n-5an-85-(n-1)+5a(n-1)+85=1-5an+5a(n-1)即6an=5a(n-1)+16an-6=5a(n-1)+1-66(an-

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(1)证明:{(an)-1}是等比数列.(2)求S

所以,第(1)份得证.第(2)份从略,利用第(1)份结论算出an,然后计算Sn就行了,等我明天起床再帮你算.再问:。。。嗯,其实第一问我也不会啊。。。再答:过程看不明白么?还是?再问:嗯,从这里开始不

已知等比数列{an}的前n项和为Sn=(2^n)-1,求数列{(an)^2}的前n项和Tn

因为S1=a1=(2^1)-1=1;又:Sn=a1*(1-q^n)/(1-q),且依题得知q=2所以,得an=a1*q^(n-1)=2^(n-1)则bn={(an)^2}=2^(2n-2)在数列bn中

等比数列{an}的前n项和为Sn a4=8 S(n+1)=pSn+1 p为

解题思路:应用特值法:Sn+1=pSn+1,分别取n=1,2,设等比数列{an}的公比为q.可得a1+a2=pa1+1,a1+a2+a3=p(a2+a1)+1,化为a1+a1q=pa1+1,p=q,又

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列,求{an}的公比q

S1+S2=2S3即a1+a1+a2=2(a1+a2+a3)解得2q^2+q=0,q=-1/2等比数列求和公式分2类,一类公比q=1,Sn=na₁第2类公比q≠1,Sn=a₁(

已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列

Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n

设等比数列{an}的前n项和为Sn,已知a1=2011,且an+2an+1+an+2=0(N∈N*),则S2012?

设公比是qan+2an+1+an+2=0∴an+2an*q+an*q²=0∴an(1+2q+q²)=0∵an≠0∴1+2q+q²=0∴(q+1)²=0∴q=-1

数列Αn的前n项和为S,A1=1,S(n+1)=2S(n)+3n+1 证明(An+3)为等比数列

因为a(n+1)=S(n+1)-S(n)=S(n)+3n+1即a(n+1)=S(n)+3n+1(1)所以a(n)=S(n-1)+3(n-1)+1(2)(1)-(2)得a(n+1)-a(n)=S(n)-

已知an是公比为q的等比数列,Sn是其前n项的和,求limSn/S(n+1)

分两种情况1.当1>q>0的时候,n趋于无穷的时候q^n=0,所以limSn/Sn+1=(1-q^n)/(1-q^(n+1))=12.当q>1的时候,limSn/Sn+1=(1-q^n)/(1-q^(

已知数列{an},若a1,a2-a1,a3-a2,a4-a3,an-an-1是公比为2的等比数列,则{an}的前n项和s

因为数列a1,a2-a1,a3-a2,a4-a3.是首相为1公比为2的等比数列则an所以a1,a2-a1,a3-a2,a4-a3.an-a(n-1)的前项和为a1+a2-a1+a3-a2+a4-a3+

已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an

an+Sn=2n令n=1a1+S1=2=>a1=1又a(n-1)+S(n-1)=2(n-1)与上式作差an-a(n-1)+an=22an-a(n-1)=2an-2=(1/2)[a(n-1)-2]得证a

已知数列an的前n项和公式为Sn=kq^n-k,求证数列an为等比数列

∵Sn=kq^n-k∴S(n+1)=kq^(n+1)-k∴a(n+1)=S(n+1)-Sn=[kq^(n+1)-k]-(kq^n-k)=k[q^(n+1)-q^n]=k[(q-1)q^na(n+1)/