已知直线的参数方程为x=4-2t;y=t-2(t为参数)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:35:04
已知直线L在直角坐标系下的参数方程为x=2+3t,y=a+4t(t为参数)以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线c的极坐标方程为ρ=(2√2)sin(θ+π/4)求曲线c的直角坐标方程和
(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2−d2=4305(10分)
1.p=2(cosθ/√2-sinθ/√2)p*p=2pcosθ/√2-2psinθ/√2x^2+y^2=√2x-√2yx^2+y^2-√2x+√2y=0所以圆心C坐标为(1/√2,-1/√2)化为直
把直线l的参数方程化为普通方程得:2x-y+1=0,把圆C的极坐标方程化为平面直角坐标系的方程得:x2+(y−2)2=2,所以圆心坐标为(0,2),半径r=2,因为圆心到直线l的距离d=2−15<r=
解(x-2)²+y²=1圆心(2.0)到直线3x-4y+4=0的距离为d=/3×2+4//√3²+(-4)²=10/5=2∴直线与圆相离∴圆C上的点到直线的距离
圆C的圆心坐标(0,根号2)半径r=根号2直线方程是y=1+2x(0,根号2)与直线的距离d=(根号2-1)除跟号5小于半径根号2故相交
(1)将等式两边同时平方 x2=16cos2θ,y2=16sin2θ 然
首先得到直线方程为x+2y=0用参数方程表示P设P为(2cosa,sina)P到直线距离为|2cosa+2sina|/√5所以最大值为2√10/5当P为(√2,√2/2)或(-√2,-√2/2)时取得
x=t^2+1t^2=x-1t=根号(x-1)y=4t-t^2=4根号(x-1)-x+1y=4根号(x-1)-x+1(x>=1)
l:y=x+3m在l上设A(x1,y1)B(x2,y2)y=x+3代入x^2+y^2-4y=0得2x^2+2x-3=0x1+x2=-1x1*x2=-3/2(1)|mA|·|mB|=根号2*|x1+1|
直线L与直线2强调指出——是什么意思?!再问:再答:x=-1+3ty=2-4t则,4x+3y-2=0联立它与曲线(y-2)^2-x^2=1就有:[(2-4x)/3-2]^2-x^2=1===>7x^2
x=-1+3ty=2-4t4x=-4+12t3y=6-12y4x+3y=2与2X-Y+1=0的交点P为(-1/10,4/5)点P到点(-1,2)的距离=√265/10
(1)将直线方程变化为:y+2=(1-x)/m,可以发现当1-x=0时,无论m取何值直线均经过点(1,-2).得证.(2)截距为-5,说明当令x=0时,y=-5,得出m=-1/3.得到直线的方程:y=
设为一个新的参数t,两个t不一样.2/根号5是直线cos倾斜角1/根号5是sin将x=1+2/根号5t和y=2+1/根号5t里的xy代入x^2+y^2=9得到一个含t的二元一次方程,用韦达定理,求(t
C(2,0),r=2L:2x+y-6=0d=|2*2+0-6|/√5=2/√5r^2-d^2=2^2-(2/√5)^2=16/5弦长=2√(r^2-d^2)=2*√(16/5)=8√5/5
(1)将等式两边同时平方 x2=16cos2θ,y2=16sin2θ 然
2x-y+1=0再问:有木有过程谢谢QAQ再答:直接把t=x代入第二个方程就可以得到了啊
ρ=2sinθ+2cosθρ²=2ρsinθ+2ρcosθx²+y²=2y+2x(x-1)²+(y-1)²=2圆心是(1,1),半径是√2x=-3ty