已知服从区间0,1上均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:18:14
已知服从区间0,1上均匀分布
已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

概率密度函数已知ε服从区间[0,1]上的均匀分布,求ε的函数n=3ε+1的概率密度

n的分布函数G(n)n的概率密度函数g(n)ε的分布函数F(ε)ε的概率密度函数f(ε)f(ε)=1,0

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

随机变量X与Y相互独立且都服从区间(0,1)上的均匀分布,则下列随机变量中服从均匀分布的有

Cx,y独立,所以XY二维平面上(x,y)各自(0,1)区间的正方形也是均匀分布的.A明显不对,可以随便取一个0到1的值反证.B和D的分布在XY二维图中是斜着的两条直线,能直接看出来不是均匀分布.再问

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

随机变量X服从区间[0,2π]上的均匀分布,求数学期望E(sinx)

概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.

设随机变量x在区间[0,4]上服从均匀分布,则p{1<X<3}=?

若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X

已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X+1,求Y的概率密度函数.

由题,设Y的概率密度为fY(y),分布函数为FY(y),由于X在区间(0,1)上的均匀分布∴Y=2X+1∈(1,3)∴对于任意的y∈(1,3),有FY(y)=P{Y≤y}=P{2X+1≤y}=P{X≤