∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2d
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:41:07
∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2du?
∫[0,2]xdx/(x^2-2x+2)^2
=∫[0,2] (1/2)(2x-2)dx/(x^2-2x+2)^2+∫[0,2]dx/(x^2-2x+2)^2
=(1/2)∫[0,2]d(x^2-2x+2)/(x^2-2x+2)^2 +∫[0,2]d(x-1)/[(x-1)^2+1]^2
=(-1/2)(1/(x^2-2x+2))|[0,2] +(1/2)arctan(x-1)|[0,2] +(1/2)(x-1)/(x^2-2x+2)|[0,2]
=(1/2)*(π/2)+1/2
..x=1+tanu,d(x-1)=secu^2du
∫d(x-1)/[(x-1)^2+1]^2=∫cosu^2du=(1/2)∫(1+cos2u)du=(1/2)u+(1/2)sinucosu
=(1/2)arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)
=∫[0,2] (1/2)(2x-2)dx/(x^2-2x+2)^2+∫[0,2]dx/(x^2-2x+2)^2
=(1/2)∫[0,2]d(x^2-2x+2)/(x^2-2x+2)^2 +∫[0,2]d(x-1)/[(x-1)^2+1]^2
=(-1/2)(1/(x^2-2x+2))|[0,2] +(1/2)arctan(x-1)|[0,2] +(1/2)(x-1)/(x^2-2x+2)|[0,2]
=(1/2)*(π/2)+1/2
..x=1+tanu,d(x-1)=secu^2du
∫d(x-1)/[(x-1)^2+1]^2=∫cosu^2du=(1/2)∫(1+cos2u)du=(1/2)u+(1/2)sinucosu
=(1/2)arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)
有一步骤看不懂 关于求不定积分 ∫dx/x+根号a^2-x^2标准答案第一步给的是 令x=asinu 则原式=∫cosu
∫(6^x-2^x)3^xdx
定积分f (x)=x^2-x∫(0到2)f(x)dx+2∫(0到1) f(x)d x,求f (x)
求不定积分∫x^2 ln xdx
求∫x^2根号xdx不定积分
定积分(1+tanu)/sec^2udu -兀/4到兀/4怎么到2定积分cos^2udu 0到兀/4
定积分(兀/2到-兀/2)根号cos^3x-cos^5xdx
当X>时,有∫f(x)/xdx=ln(x+√(1+x^2))+c 求∫xf`(x)dx
不定积分问题:1)∫arctan1/xdx 2)∫arctan√xdx (dx前为根号X)
求几个微积分解答 ∫(2x+1)³dx ,∫(x+1)/√xdx,∫㏑²x/xdx
∫(根号(x^2-9)/xdx和∫x d(arcsinx)如何求积分
计算题 (1)∫(inx)平方1/xdx (2)y=1-x/根号x 求y’