作业帮 > 数学 > 作业

∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2d

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:41:07
∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2du?
∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2d
∫[0,2]xdx/(x^2-2x+2)^2
=∫[0,2] (1/2)(2x-2)dx/(x^2-2x+2)^2+∫[0,2]dx/(x^2-2x+2)^2
=(1/2)∫[0,2]d(x^2-2x+2)/(x^2-2x+2)^2 +∫[0,2]d(x-1)/[(x-1)^2+1]^2
=(-1/2)(1/(x^2-2x+2))|[0,2] +(1/2)arctan(x-1)|[0,2] +(1/2)(x-1)/(x^2-2x+2)|[0,2]
=(1/2)*(π/2)+1/2
..x=1+tanu,d(x-1)=secu^2du
∫d(x-1)/[(x-1)^2+1]^2=∫cosu^2du=(1/2)∫(1+cos2u)du=(1/2)u+(1/2)sinucosu
=(1/2)arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)