已知数列an中a一等于五an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:29:51
由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
a1=2=2/1a2=1/2+1=3/2a3=2/3+1=5/3a4=3/5+1=8/5a5=5/8+1=13/8所以对第n项的分母来说,有以下规律1,2,3,5,8,后一项是前一项与再前一项的和,由
a(n+1)*an=a(n+1)-an两边除以a(n+1)*an得1/a(n+1)-1/an=-1令bn=1/an则bn-b(n-1)=-1,b1=1/a1=-1即bn是以-1为首项,-1为公差的等差
a1=1/3,a(n+1)=an/(1+2an),倒数1/a(n+1)=(1+2an)/an=1/an+2所以1/a(n+1)-1/an=2所以1/an是以1/a1=3为首项,d=2的等差数列所以1/
∵数列{an}中,an=2n−1(n为正奇数)2n−1(n为正偶数),∴a9=29-1=28=256.S9=21-1+(2×2-1)+23-1+(2×4-1)+25-1+(2×6-1)+27-1+(2
∵an+₁=an-In[n/(n+1)]∴a(n+1)-an=ln[(n+1)/n]=ln(n+1)-lnnn≥2时,a2-a1=ln2-ln1a3-a2=ln3-ln2a4-a3=ln4
由题意得an+1=an1+2an,则-2an+1•an=an+1-an,两边除以an+1•an得,1an+1−1an=2,∴数列{1an}是以1为首项,2为公差的等差数列,∴1an=1+(n-1)×2
易知道an>0,我们对an+1=1/a*(an)^2(a>0),两边同时取ln对数得lna(n+1)=2lnan-lna,则有lna(n+1)-lna=2(lnan-lna)即[lna(n+1)-ln
证明:(1)当n=1时,a1=52>2,不等式成立.(2)假设当n=k时不等式成立,即ak>2(k∈N*),则当n=k+1时,ak+1-2=a2k2(ak−1)-2=(ak−2)22(ak−1)>0,
解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
a1=aa(n+1)+an=4n-1-->a(0+1)+a0=-1-->a1+a0=-1-->a0=-1-a(1)若a=1则a0=-1-1=-2a1=1a2=a(1+1)=4-1-a1=2a3=a(2
(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=
a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an[a(n+2)-a(n+1)]/[a(n+1)-2an]=2∴数列{an+1-an}是等比数列a(n+1)-an=
a(n+1)=an/(1+2an)(两边取倒数)1/a(n+1)=(1+2an)/an1/a(n+1)=1/an+21/a(n+1)-1/an=2所以{1/an}是以1/a1=1为首相d=2为公差的等
这是一道选择题,所以可以用代入验证法把a1代入[a(n+1)-an]^2-2[a(n+1)+an]+1=0式中可得a2是4(其实得俩解一个是4一个是0,但a(n+1)>an,所以舍去0,得4)最后代入
∵a1=35,a2=31100∴a2−110a1=14,a2−12a1=1100∵数列{an+1−110an}是公比为12的等比数列,首项为a2−110a1=14∴an+1−110an=14(12)n
∵an=nn2+156=1n+156n≤1439∵1n+156n≤1439当且仅当n=239时取等,又由n∈N+,故数列{an}的最大项可能为第12项或第13项又∵当n=12时,a12=12122+1
a(n+1)=1/2(2an+1)=an+1/2a(n+1)-an=1/2所以d=1/2所以a51=a1+50d=45