a b c=0向量ab夹角120,b模=2a摸ac夹角
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:09:31
(ab表示AB长度,AB表示向量AB,bc同理)设夹角为θ因为向量AB*向量BC=3>0所以向量AB与向量BC夹角为锐角S=1/2*ab*bc*sinθ因为ab*bc*cosθ=3所以9/(4s^2+
AB=4,AC=2,夹角又是60度;符合这样的三角形ABC一定为直角三角形(角ACB为直角).把这个三角型搁到直角坐标系里,你一看就能明白了.如果还明白,就再随便设个数,最后都消的掉.
设AB=c,AC=b,s=cbsinθ/2,故sinθ=2s/bc,0
1.在三角形ABC中,角A=120°,AC=根号3,AB=2根号3,问BC=?BC=√[3+12+6]=√21(余弦定理)6.设a=(x,3),b=(2,-1),若a,b夹角为钝角,则实数x的取值范围
以下·代表向量点积(1)由0≤AB·AC知θ不能为钝角,因此sinθ与cosθ均为正数.由面积公式S=1/2*(|AB|*|AC|sinθ)=3及|AB|*|AC|cosθ=1,所以θ的取值范围是[π
由a+b+c=0得c=-(a+b),平方得c^2=a^2+2a*b+b^2=a^2+2|a|*2|a|*cos120°+4a^2=3a^2,因此由a+c=-b得b^2=a^2+c^2+2a*c,所以,
向量AB*向量BC+向量AB的平方=0向AB(向BC+向AB)=0向AB·向AC=0三角形ABC是直角三角形
告诉你吧~其实这个问题很简单那就是1+1=?、自己想去!
分析(Ⅰ)根据三角形的面积,数量积的范围,推出关系式,然后求出θ的取值范围;(Ⅱ)利用二倍角公式、两角差的正弦函数,化简函数f(θ)=2sin2(π/4+θ)-3cos2θ为一个角的一个三角函数的形式
1AB的模为c,AC的模为bABC的面积为3S=1/2bcsinθ=3bc=6/sinθ0≤向量AB*向量AC≤60≤bc*cosθ≤60≤6/sinθ*cosθ≤60=
记|AB|=c;|BC|=a;3≤s=a*c*sinB/2≤3*根号3;(1)向量AB*向量BC=6=a*c*cos(180度-B),所以a*c*cosB=-6;(2)(1)/(2)化简得:-根号3≤
1.因为三角形ABC的面积=(ABXAC)sinθ/2=3ABXACsinθ=6-->sinθ=6/ABXAC.(1)而0≤向量AB·向量AC≤6也就是0≤ABxACcosθ≤6--->0≤cosθ≤
∵向量a=b+c,∴a^2=(b+c)^2,即a^2=b^2+2b·c+c^2又a、b、c是单位向量,∴1=1+2b·c+1,∴b·c=-1/2设向量a、b的夹角为θ,则cosθ=a·b/|a||b|
AB、BC分别为向量AB、BC的模向量AB*向量BC=AB*BC*cosα=6S=AB*BC*sin(π-α)/2=AB*BC*sinα/2√3≤S≤3∴√3/3≤2S/(向量AB*向量BC)≤1即√
由已知得:AB·(BC+AB)=0∴AB·AC=0从而AB⊥AC即三角形是直角三角形
以BC为x轴BC中点D与A的连线为y轴正方向建系设△ABC边长为2则A(0,根号3)B(-1,0)C(1,0)设P(x,y)则向量AP向量PB向量PC都能表示出来了再用已知导出x和y再用向量夹角余弦值
1.怎么出来是向量AB与向量CD的夹角是啊,d哪来的啊,应该是向量AB与向量CB的夹角吧向量AB与向量CB的夹角是60°2.选Cc打错了吧,应该是.OP=(OA+aOB)/(1+a)AP=aPB->(
1因为AB=4,向量AC=2,向量AD=1/3向量AB+2/3向量AC所以向量AD=4/3*AB单位向量+4/3*AC单位向量由于向量可以平移,所以向量AD和4/3*AB单位向量,4/3*AC单位向量
(1)根号3≤S≤3,即根号3≤1/2AB*BCsina≤3,则有2根号3≤AB*BCsina≤6(1)向量AB*向量BC=6,即AB*BCsin(π-a)=6,AB*BCsina=-6(2)(2)/
∵√3≤|AB||BC|sina/2≤3====>2√3≤|AB||BC|sina≤6……(1)|AB||BC|cosa=6………(2)(1)/(2):√3/3≤tana≤1∴30º≤a≤4