已知复数z满足|z|=1,且z≠±i,求证:(z i) (z-i)是纯虚数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:22:21
设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+
由Z-2的模等于2可知|Z-2|=2得Z=0或Z=4因为Z+Z分之1属于R所以(Z+1)/Z属于R所以Z=0舍去所以Z=4
设z=x+iy,由条件知道:√(x^2+y^2)+x-iy=1-2i故:√(x^2+y^2)+x=1-y=-2解得:x=-3/2,y=2即z=-3/2+2i
z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i
(z+i)/(z-i)取barbar(z+i)/(z-i)=(barz-i)/(barz+i)(因为|Z|=1,所以z*barz=1)=(1/z-i)/(1/z+i)=(1-iz)/(1+iz)=(i
(1)设z=a+b*i,则z共轭=a-b*i由已知:z*z共轭=(a+b*i)(a-b*i)=a^2+b^2=4(1)|a+b*i+1+根号3i|=|(a+1)+(根号3+b)*i|=4即(a+1)^
z=3+3i,或z=-2-2i.
设Z=a+bi1/Z=(a-bi)/(a^2-b^2)又满足Z加1/Z为实数a^2-b^2=1b^2=a^2-1Z-2的模等于2(a-2)^2+b^2=42a^2-4a-1=0a=(4±2根号2)/4
z*z-3i*z=1+3i化简(z+1)(z-1-3i)=0所以z=-1或z=1+3i
设z=a+bi则(3+2i)(a+bi)=3(a+bi)+3+2i即(3a-2b)+(2a+3b)i=(3a+3)+(3b+2)i所以3a-2b=3a+3,2a+3b=3b+2故a=1,b=-3/2所
依题,由复数z=x+yi(x,y∈R),满足│z│=1,得:x^2+y^2=1另外:│z-1-i│^2=(x-1)^2+(y-1)^2=-2(x+y)+3(注:将x^2+y^2=1带入)而:1/2=(
设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)
设z=x+yiz+1/z=(x+yi)+1/(x+yi)=(x+yi)+(x-yi)/(x²+y²)=x+x/(x²+y²)+[y-y/(x²+y&s
设z=a+bi(a,b∈R),|z|=a2+b2,代入方程得a+bi+a2+b2=2+8i,∴a+a2+b2=2b=8,解得a=−15b=8,∴z=-15+8i..z=-15-8i.
设z=a+bi|a+bi+√3+i|=|(a+√3)+(b+1)i|=√[(a+√3)²+(b+1)²]=1|(a+√3)²+(b+1)²=1令a=-√3+si
我教你这种求复数z你可以选择设z=a+bi|z|=√(a^2+b^2)————(你要理解这是实数!与虚部无关)共轭复数z'=a-bi所以|z|-z'=√(a^2+b^2)-a+bi=1-2i对应的实部
设z=a+bi,a,b是实数则z拔=a-bi|z|即z的模,是实数所以左边的虚数是-b右边是2所以-b=2b=-2|z|=√(a²+b²)所以√(a²+4)+a+2i=1
z=a+bi,a,b是实数则a^2+b^2=11/z=1/(a+bi)=(a-bi)/(a^2+b^2)=a-bi所以z+1/z=2az≠±i所以a≠0所以z+1/z≠0所以z+1/z=(z^2+1)
设Z=a+bi,原式变为根号下a^2+b^2-a-bi=1-i实虚部各相等,所以b=1,a=0Z=i
|Z|=1+3i-Z|Z|+Z=1+3i因为lZl是实数所以设Z=x+3i所以√(x^2+3^2)+x=1即x^2+9=(1-x)^2得x=-4所以Z=-4+3i