已知在菱形ABCD中,E是BC的中点,且角FAE等于角BAE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:59:23
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
(1)∵四边形ABCD是菱形∴BC=AB=4∵E是BC的中点∴BE=2∴cos∠ABC=BE/AB=2/4=1/2∴∠ABC=60°(2)菱形ABCD的面积=底边×高=BC×AE∵∠ABC=60°∴A
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
第一问简单再答:再答:再答:
提示:图片不太清晰!学霸们无法解答.下次提问要注意图片质量哦.再问: 再问:刚才的那个图
如图所示:由题意得:菱形四边相等,且AEF是正三角形,边长等于菱形边长;由于是菱形,则A点到BC和BD边上的垂线相等(菱形对角线是角平分线,角平分线到两边的垂线相等);三角形ABE和三角形ADF均为等
100°因为AE=EF=AF=AB且角B=角D所以角B=角AEB=角D=角AFD所以角BAE=角DAFAE=EF=AFAEFwei等边三角形设角BAE为X可得(180-X)/2+2X+60=180X=
菱形中∠ABE=∠ADF,AB=AD,BE=DF,边角边,△ABE≌△ADF菱形中∠BAD=∠BCD=130°,∠BAE=∠GAF=25°,∠DGC=∠EAD=130°-25°=105°,∠AHC=∠
1,证明,因为菱形ABCD,所以,CD=CB=AB=AD,角abc=角adc,∠BCD=∠BAD又CE=CF,所以,DF=BE,AD=AB,角abc=角adc所以:△ABE≌△ADF2、因为:△ABE
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
设be为k5再答:5k再答:则ab为13k再答:因为是菱形所以5k+1=13k再答:k=1/8再答:则bd=5/8再答:be再答:ab=13/8再答:最后77/32再答:口算的求采纳再问:你能保证对吗
证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=12AB,DE=12AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
如图所示:因为是菱形,所以四边形等,对角线是对角的角平分线;AB=AD,AE=AE,角BAE=DAE,则三角形ABE≌ADE,则角ABE=ADE;因BC平行AD,则角ADE=CFE,即:∠ABE=∠C
辅助:连接AC;在三角形ABC中,AE垂直于BC,E是BC的中点,而菱形的性质又决定AB=BC;所以三角形ABC是等边三角形,∠ABC=60度;菱形的面积=AE*菱形边长;AE^2=4^2-2^2=√
设菱形的边长为x,则BE的长为x-1.∵cosB=513,∴BEAB=x-1x=513,可得:x=138,∴BE=58,∵AB2=BE2+AE2,即(138)2=(58)2+AE2,∴AE=32.故:
证明:(1)因为四边形ABCD是菱形所以AD=CDAB=CB∠A=∠C因为BE=BF所以AE=CF在△ADE与△CDF中AD=CD∠A=∠CAE=CF所以AE=CF所以△ADE≌△CDF(SAS)(2
这个题目也忒简单了!首先明确一个定理:四条边都相等的平行四边形是菱形.因为AE//BF,EF//AB,所以四边形ABFE是平行四边形;又角ABE=角EBF,角AEB=角EBF;所以角ABE=角AEB;
连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形