已知向量a=(根号3sinx,-1),b=(2cosx,1-2cosx2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:57:38
第一个问题:∵向量a=(√3sinx,sinx),向量b=(sinx,cosx),∴f(x)=向量a·向量b=√3(sinx)^2+sinxcosx=2sinx[(√3/2)sinx+(1/2)cos
f(x)=向量a乘向量b=2sinx*√3cosx+(√2cosx+1)(√2cosx-1)=√3sin2x+2(cosx)²-1=√3sin2x+cos2x=2sin(2x+π/6)∴T=
f(x)=a^2+2aba^2=1,a*b=(sinx)^2+√3sinx*cosx=1/2-1/2cos2x+√3/2sin(2x)=1/2+sin(2x-π/6)所以f(x)=1+2(1/2+si
f(x)=(2sinx)×(√3cosx)+(cosx+sinx)×(sinx-cosx)f(x)=2√3sinxcosx-(cos²x-sin²x)f(x)=√3sin2x-co
第一题:(1):f(x)=2倍sinx的平方+2倍根号3cosxsinx-1化简为:f(x)=-2cos(2x+π/3)显然f(x)在x=0处去最小为-1;在x=π/3处取最大为2(2):f(x)=-
fx=向量a*向量b=√3sin²x+sinxcosx(1)√3sin²x+sinxcosx=0√3sinx+cosx=0tanx=-√3/3零点为5π/6(2)f(x)=(√3/
是这个题吧:已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2x/4)1.向量m乘以向量n=1,求cos(π/3+x)的值2.记f(x)=向量m乘以向量n,在三角形ABC中,角
(1)f(x)=msinxcosx-2√3(sinx)^2+√3=(m/2)sin2x+√3cos2x,x=π/6是函数y=f(x)的零点,∴(m/2+1)√3/2=0,m=-2.∴f(x)=-sin
1f(x)=AB·AC=(-√3sinx,sinx)·(sinx,cosx)=-√3sinx^2+sinxcosx=sin(2x)/2-√3(1-cos(2x))/2=sin(2x)/2+√3cos(
f(x)=mn=2cos^2x+2√3sinxcosx+a-1+1=cos2x+√3sin2x+a+1=2sin(2x+π/6)+a+1f(x)=0sin(2x+π/6)=(-a-1)/2f(x)在【
1、f(x)=2sin²x+2√3sinxcosx=1-cos2x+√3sin2x=2sin(2x-π/6)+1.当x∈[0,π/2]时,f(x)∈[2,3];若f(x)关于直线x=a对称,
分析,f(x)=a*b-√3=2sinx*cosx+2√3sin²x-√3=sin(2x)-√3cos(2x)=2sin(2x-π/3)当,2kπ+π/2≦2x-π/3≦2kπ+3π/2∴k
f(x)=a*b=2sinxcosx+2√3(sinx)^2=sin(2x)+√3[1-cos(2x)]=2sin(2x-π/3)+√3,因为y=f(x+φ)=2sin(2x+2φ-π/3)+√3为偶
f(x)=2sinxcosx+2√3(cosx)^2-1-√3=sin2x+√3cos2x-1=2sin(2x+π/3)-1(1)当2x+π/3=π/2,即x=π/12时,f(x)取得最大值f(π/1
向量a=(sinx,-1),向量b=((√3)cosx,-1/2),函数f(x)=(a+b)•a-2;已知a,b,c分别为三角形ABC内角A,B,C的对边,其中A为锐角,a=2√3,c=4
1.f(x)=2(√3sinxcosx+(cosx)^2)+2m-1=√3sin2x+cos2x+2m=2sin(2x+pi/6)+2m最小正周期=pi2.x属于[0,pi/2]f(x)最小值=2si
(1)a*b=0sin2x-cos2x=0sqr(2)sin(2x-π/4)=0x=π/8+kπ/2,k∈Z(2)f(x)=sqr(2)sin(2x-π/4)x∈(3π/8+kπ,7π/8+kπ),k
(1)f(x)的最小正周期为π(2)f(x)的值域为[-2,2] 过程如下图:
没错,f(x)=2sin(2x+π/6)周期T=2π/2=π因为-1≤sin(2x+π/6)≤1f(x)max=2f(x)min=-2
f(x)=a·b=sin²x-√3sinxcosx²=1/2-(cos2x+√3sin2x)/2=1/2-sin(2x+π/6)单调递增区间2x+π/6∈[(2n+1/2)π,(2