已知函数fx=m(x-1)e^x x^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:16:26
已知函数fx=m(x-1)e^x x^2
高中函数 已知函数f(x)=x平方/ex次方. (1)求函数fx的单调区间. (2)若方程fx=m

f'(x)=[2xe^x-x²e^x]/(e^x)²=(2x-x²)/(e^x)∴(-∞,0)单调递减,(0,2)单调递增;(2,+∞)单调递减∴极小值是f(0)=0极大

已知函数Fx=e的x次方+2x的平方-3x.(1)判断Fx在区间【0,1】上极值点情形及个数

求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点

已知函数fx是定义在[-e,0) (0,e]上的奇函数 当x属于(0,e]时 fx=ax+Inx (1)求f(x)

(1)当x∈[-e,0)时,-x∈(0,e],f(x)=-f(-x)=-a(-x)-ln(-x)=ax-ln(-x)(2)当x∈[-e,0)时,f(x)=ax-ln(-x),f'(x)=a-1/x当a

已知函数fx=e^x-1/e^|x|,其中e是自然对数的底数

证明:当x=0时,f(x)=1-1=0,从而f(-x)*f(x)=0;  当x0时,f(-x)=e^(-x)-1/e^x=e^(-x)-e^(-x)=0,从而f(-x)*f(x)=0*f(x)=0; 

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

已知函数fx=(ax+1)(x+1)e^x,a属于R,若函数

解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,

已知函数fx=x-m/x在[1,正无穷大)上是增函数,求实数m的取值范围

fx=x-m/x在[1,正无穷大)上是增函数,f'x=1+m/x²x=1代入必须f'x≥0即1+m≥0m≥-1

已知函数fx=1/3^x-1+m,求实数m的值,是fx为奇函数

奇函数f(-x)=-f(x)令x=1f(1)=1/2+mf(-1)=-3/2+mf(1)+f(-1)=1/2+m-3/2+m=02m-1=0m=1/2

已知函数fx=ax²-e的x次方

因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得

已知函数fx=(x-k)e^x,求fx的单调区间?

f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)

已知向量m=(2sinx/4,2sin^2x/4-1),n=(cosx/4,-√3),函数fx=m.n (1)求函数fx

向量m=(2sinx/4,2sin^2x/4-1),n=(cosx/4,-√3)f(x)=mn=2sin(x/4)cos(x/4)-√3[2sin^2(x/4)-1]=sin(x/2)+√3cos(x

已知函数fx的导函数f’x,满足xf'x+2fx=(lnx)/x,且 f(e)=1/(2e),则fx的单调性情况为?

xf'(x)+2f(x)=(lnx)/x,定义域为x>0===>x²*f'(x)+2xf(x)=lnx===>[f(x)*x²]'=lnx===>f(x)*x²=∫lnx

已知函数f(x)=x平方/e平方x.求函数fx的单调区间 2若方程fx=m有且只有一个解,求实数m的取值范围

f(x)=x^2/(e^x)因为对于任意x,e^x>0,所以f(x)的定义域为R===>f'(x)=[2x*e^(x)-x^2*e^x]/(e^x)^2===>f'(x)=

已知函数fx=x|x-m|+2x-3(m∈R)若m=4,求函数fx在区间[1,5]的值域

(1)m=4,则函数f(x)=x|x-4|+2x-3,当x-4>0时,f(x)=x^2-2x-3,定义域x(4,5],f(x)最小值=1,若x=5,则f(x)最大值=12;当x-40时,f(x)>=1

已知函数fx的定义域为R,f'x是fx的导函数,且f'x=e的x次方(x²-3x+2).(1)求fx的单调区间

f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=lnx/x-x 1.求函数fx单调区间 2.设m>0求fx在[m.2m]上的最大值

1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个

已知函数fx= -1,x

解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1