已知函数f(x)=√2sin(2x-π 4) 1 求它的振幅,最小正周期,初相
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:03:51
①原式=f(x)=2cos2x+sinx^2=2cos2x+1-cos2x/2=3/2cos2x+1/2故f(π/3)=3/2*cos2π/3+1/2=-3/4+1/2=-1/4②依f(x)=3/2c
f(x)=sin²x+sinxcosx=[1-cos(2x)]/2+sin(2x)/2=sin(2x)/2-cos(2x)/2+1/2=(√2/2)sin(2x-π/4)+1/2最小正周期T
1、由于函数g(x)=sin(2(x-a)+π/3)为偶函数,所以g(x)的图像关于y轴对称,即函数g(x)当x=0时取得最值,所以g(0)=±1,解得sin(π/3-2a)=±1,sin(2a-π/
∵f(x)=2sin(π-x)cosx=2sinxcosx=sin2x1、最小正周期T=2π/2=π.2、∵-π/6≤x≤π/2∴-π/3≤2x≤π,∴-√3/2≤f(x)≤1,∴最大值1,最小值-√
f(x)=sin2x-2sin^2x=sin2x+cos2x-1=√2sin(2x+π/4)-1.(1)T=2π/2=π.(2).当2x+π/4=2kπ+π/2,k∈Z,即x=kπ+π/8,k∈Z时,
(1)f(x)=√3(1-cos2x)-1/2sin2x+√3/2cos2x=√3-1/2sin2x-√3/2cos2x=√3-sin(2x+π/3)∴最小正周期T=2π/2=π单调增区间:π/2+2
f(x)=cosx+sinxf(x)=√2sin(x+π/4)(1)递增区间:2kπ-π/2≤x+π/4≤2kπ+π/2得:2kπ-3/4π≤x≤2kπ+π/4递增区间是:[2kπ-3π/4,2kπ+
f(x)=sin²(x)+(√3)sin(x)cos(x)+2cos²(x)=3/2+√3/2sin2x+1/2cos2x=3/2+sin(2x+π/6)函数f(x)的最小正周期T
答:f(x)=(cosx)^2-√3sinxcosx+2(sinx)^2-1/2f(x)=(1/2)*cos(2x)-(√3/2)sin2x+1-cos(2x)f(x)=-(√3/2)sin2x-(1
f(x)=sin2x+cos2x-1=√2sin(2x+π/4)-1.1、最小正周期是π,最大值时2x+π/4=2kπ+π/2,即x=kπ+π/4,k是整数.再问:已知函数f(x)=2sin(∏-X)
因为f(x)=sinx+cosx=√2sin(x+π/4)第一题T=2π/1=2π第二题当sin(x+π/4)=1时,为最大值,即f(x)=√2sin(x+π/4)=-1时,为最小值,即f(x)=-√
(1)偶函数,则f(x)=f(-x)即:sin(2x+φ)=sin(-2x+φ),根据积化和差公式sin(2x)*cos(φ)+cos(2x)*sin(φ)=sin(-2x)*cos(φ)+cos(-
(1)F(X)=√3sin2x+2sin²x=√3sin2x+1-cos2x=2(√3/2sin2x-1/2cos2x)+1=2sin(2x-π/6)+1F(x)的最小正周期T=2π/2=π
f(x)=2sin(派-x)cosx=2sinxcosx=sin2x最小正周期=2pi/2=pi(pi就是“派”)f(-pi/6)=sin(-pi/3)=-(根号3)/2f(pi/2)=sin(pi)
f(x)=(√3sinωx+cosωx)*sin(-3π/2+ωx)=(√3sinωx+cosωx)*sin(π/2+ωx)=(√3sinωx+cosωx)*cosωx=(1/2)*(√3*2sinω
cosx=cos²(x/2)-sin²(x/2)所以f(x)=2√2[cos²(x/2)-sin²(x/2)]/[cos(x/2)-sin(x/2)]=2√2[
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
已知函数f(x)=sin(x/2)+(√3)cos(x/2),x∈R;(1)求f(x)的最小正周期,并求函数f(x)在x∈[-2π,2π]上的单调增区间;(2)函数f(x)=sinx(x∈R)的图像经
f(x)=sin^2x+2√3sinxcosx+3cos^2x=1+√3sin2x+2cos^2x-1+1=√3sin2x+cos2x+2=2(sin2x*√3/2+cos2x*1/2)+2=2sin
f(x)=[2(sinx*1/2+cosx*√3/2)+sinx]cosx-√3sin²x=(2sinx+√3cosx)cosx-√3sin²x=2sinxcosx+√3(cos&