已知一垄断成本函数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:37:07
已知一垄断成本函数为
《经济学》已知垄断者成本函数TC=6Q+0.05Q^2,产品需求函数Q=360-20P 求:(1)利益最大的销售价格,产

垄断价格P下的利润为f(P)=PQ-TC=P(360-20P)-6(360-20P)-0.05(360-20P)^2=-40(P^2-30P+216)令f'(P)=0,得2P-30=0,于是利益最大的

已知某垄断厂商生产的一种产品,在两个市场上出售,其成本函数为TC=Q2+40Q,两个市场的需求函数分别为Q1=12-0.

MC=TC'=2Q+40P1=120-10Q1MR1=120-20Q1MR=MC120-20Q1=2Q1+40Q1=80/22=3.6P1=120-36=84P2=50-2.5Q2MR2=50-5Q2

某垄断厂商成本函数TC=0.5Q^2+10Q,产品的需求函数为P=90-0.5Q.计算售价P=55时垄断者提供的产量和赚

当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由

某垄断厂商的产品需求函数为P = 1760-12Q,成本函数为TC =1/3Q^3-15Q^2+5Q+24000

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某垄断竞争厂商的短期成本函数为TC=0.6Q*Q+3Q+2

好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-

关于微观经济学的计算题 垄断企业的成本函数为C=1000+200Q+5Q2,产品的需求为P=800-4Q,求:垄断企业利

首先,求出利润函数利润=收入-成本,收入=价格*数量,故利润W=P*Q-C=(800-4Q)*Q-(1000+200Q+5Q^2)是一个关于Q的一元二次函数,可以求最值按照微观经济学的解法,利润最大化

已知垄断者的成本函数TC=……,产品的需求函数为Q=……求:(2)如政

MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60,P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360

某垄断厂商的产品需求函数为P = 10-3Q,成本函数为TC = Q2 + 2Q,垄断厂商利润最大时的产量、价格和利润

垄断厂商利润最大化的条件是MR=MCMR=dTR/dQ=d(P*Q)/dQ=10-6QMC=dTC/dQ=2Q+2由MR=MC得到10-6Q=2Q+2得到Q=1;P=7利润=TR-TC=4

假设一个垄断厂商面临的需求函数为P=10-3Q,成本函数为TC=Q2+2Q.

解.依题可得MR=10-6Q;MC=TC'=2Q+2利润最大时有MR=MC即10-6Q=2Q+2解得Q=1P=10-3=7利润=PQ-TC=1*7-(1+2)=4

已知某垄断者的成本函数为TC=8Q+0.05Q2,产品的需求函数为Q=400-20P,求:(1)垄

MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360再问:可不可以

已知垄断企业的成本函数是TC=6Q+0.05Q2,产品需求函数是Q=360-20P,求如果政府试图对垄断企业采取规定产量

若政府试图对垄断企业采取规定,使其达到完全竞争的产量水平,及边际成本定价法因此P=MC6+0.1Q=18-0.05QQ=80P=14TC=480+0.05*6400=600利润=TR-TC=1120-

已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.

(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q

1、已知某垄断竞争厂商的产品总需求函数为P=9400-4Q,成本函数为TC=4000+3000Q ,Q为产量.求

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

一垄断厂商成本函数为:TC=5Q(Q+4)+10,产品的需求函数为:Q=140-P.

联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.

已知成本函数和需求函数,计算垄断厂商最大利润时候的价格、产量和利润

利润π(q)=TR(q)-TC(q)π(Q)=PQ-TC(Q)=(18-Q/20)Q-6Q-0.05Q²=-0.1Q²+12Qdπ/dQ=-0.2Q+12=0,Q=60P=18-0

一成本不变垄断厂商的成本函数为AC=MC=10,市场的需求函数为Q=60-P.(1)求均衡产量,价格,和利润;

1)先求MR函数:P=60-Q,R=60Q-Q^2,MR=60-2Q当MR=MC时,10=60-2Q,Q=25,P=35,利润=(35-10)*25=6252)P=90-2Q,R=90Q-2Q^2,M

已知某垄断厂商的成本函数为TC=0.6Q^2+3Q+2,需求函数为Q=20-2.5P ,求:

垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR

已知某垄断厂商的平均收益函数为AR=1200-4Q,平均成本函数为,试求:(1)垄断厂商的需求函数; (2)垄断

(1)因为总收益TR=P*Q=AR*Q=>P=AR=1200-4Q需求函数为P=1200-4Q(2)TR=PQ=(1200-4Q)Q=1200Q-4Q²(3)TC=AC*Q将AC带入即可