已知|a-1| 根号b 2=0.求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:03:16
注意到不等式的左边是三个直角三角形斜边的和,可以考虑把符号化的式子转化为直观的几何图形,把抽象问题形象化.作如下图,由两点之间,线段最短,马上可得要求证的结论.而且从图中可以知道当且仅当a=b=c时取
a根号1-b²+b根号1-a²=1两边平方a²(1-b²)+b²(1-a²)+2ab根号(1-a²-b²+a²
因为a>0,b>0所以a√(1+b2)=√2•(√a2(1/2+b2/2))因为a2+(1/2+b2/2)=a2+b2/2+1/2=1+1/2=3/2所以a√(1+b2)≤(√2̶
对于任意正数a,b我们有:√a
由柯西不等式,a*sqrt(1-b^2)+b*sqrt(1-a^2)
证明:根据题意我们知道:b^2
a²+b²+2a+4b+5=0(a²+2a+1)+(b²+4b+4)=0(a+1)²+(b+2)²=0a+1=0,b+2=0a=-1,b=-
题目应该是a^2+b^2/2=1吧,此时a*√(1+b^2)=√[a^2+(ab)^2]=√[a^2+a^2*2*(1-a^2)]=√[-2a^4+3a^2]=√[-2(a^2-3/4)^2+9/8]
令x=a+√(a^2+1),则1/x=1/[√(a^2+1)+a]=[√(a^2+1)-a]/{[√(a^2+1)+a]*[√(a^2+1)-a]}(分母有理化,分子分母同乘以√(a^2+1)-a)=
(a-1)²+2c²=d²-1且c²+d²=-√(1-1/b)+1.求a²+b²+c²+d³的值.是这样吗?再
(a^2+b^2)/(a-b)=(a^2+b^2-2ab+2ab)/(a-b)=[(a-b)^2+2]/(a-b)=(a-b)+2/(a-b)>=2√[(a-b)*2/(a-b)]=2√2所以(a^2
三个分别平方,再相加,再除以二.
没看懂题目,不过我给你推荐一个方法,你设a=sinx,b=cosx,带进去
2a²=b²=3∴a=√3/2=(√6)/2a√(b²+1)=[(√6)/2]×√(3+1)=[(√6)/2]×2=√6
(根号a-b²)+绝对值(b³-8)=0b³-8=0b=2a-b²=0a=4√2a/b=√8/2=√4=2如果本题有什么不明白可以追问,再问:лл���ף��a
感觉应该求M的最大值a²+b²≥M√(ab-a-b+1)恒成立即M≤(a²+b²)/√(ab-a-b+1)恒成立需M≤[(a²+b²)/√(
由已知:设a=cosX,b=根号2*sinX那么:设d=(所求式子的平方)=a^2*(1+b^2)=(cosX)^2*[1+2(sinX)^2]=2(cosX)^2*[1/2+(sinX)^2]
∵根号下(1-a2)乘根号下(1-b2)=ab∴(1-a²)(1-b²)=a²b²∴1-a²-b²+a²b²=a
|2a+1|+(b2+c2-1)2=0|2a+1|=0a=-1/2a2=1/4(b2+c2-1)2=0b2+c2-1=0b2+c2=1a2+b2+c2=1/4+1=5/4
1/a+1/b+1/c=0两边乘abcab+ac+bc=0a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=(√2+√5)2=7+2√10